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Quizz

if C and C ′ are two convex sets, then C ∪ C ′ is convex?

1. Yes 2. No
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Quizz

if C and C ′ are two convex sets, then C ∪ C ′ is convex?

1. Yes 2. No

if Ci is a family of convex sets, then
⋂

i∈I Ci is convex
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Quizz

The matrix M =





3 2 1
2 5 3
1 2 8



 is positive definite?

1. Yes 2. No
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Quizz

The matrix M =





3 2 1
2 5 3
1 2 8



 is positive definite?

1. Yes 2. No

has to be symmetric at least...
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Quizz

The matrix M =





3 2 1
2 5 2
1 2 8



 is positive definite?

1. Yes 2. No
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Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or not
always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems
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Convex functions
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Short outline

• basic properties and examples

• operations that preserve convexity

• the conjugate function

CO&ML 9



Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1
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Examples on R

convex:

• affine: ax+ b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax+ b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++
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Quizz

A norm is a function ‖·‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

A norm is a convex function?

1. Yes 2. No
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Quizz

A norm is a function ‖·‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

A norm is a convex function?

1. Yes 2. No
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Examples on R
n and R

m×n

affine functions are convex and concave; all norms are convex

examples on R
n

• affine function f(x) = aTx+ b

• norms: ‖x‖p = (
∑n

i=1 |xi|
p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on R
m×n (m× n matrices)

• affine function

f(X) = Tr(ATX) + b =
m
∑

i=1

n
∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2
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Restriction of a convex function to a line

f : Rn → R is convex if and only if the function g : R → R,

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ R
n

can check convexity of f by checking convexity of functions of one variable
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Restriction of a convex function to a line

example. f : Sn → R with f(X) = log detX , domX = Sn
++

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n
∑

i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X ≻ 0, V ); hence f is concave

CO&ML 16



First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator.
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

∇2f(x) ∈ Sn
+ for all x ∈ dom f

• if ∇2f(x) ≻ 0 (also written ∇2f(x) ∈ Sn
++) for all x ∈ dom f ,

then f is strictly convex
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Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P � 0

least-squares objective: f(x) = ‖Ax− b‖22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)

quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[

y
−x

] [

y
−x

]T

� 0

convex for y > 0
xy

f
(x

,
y
)

−2

0

2

0

1

2
0

1

2
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log-sum-exp: f(x) = log
∑n

k=1 expxk is convex

∇2f(x) =
1

1
T
d,dz

diag(z)−
1

(1T
d,dz)

2
zzT (zk = expxk)

to show ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v:

vT∇2f(x)v =
(
∑

k zkv
2
k)(

∑

k zk)− (
∑

k vkzk)
2

(
∑

k zk)
2

≥ 0

since (
∑

k vkzk)
2 ≤ (

∑

k zkv
2
k)(

∑

k zk) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = (
∏n

k=1 xk)
1/n on R

n
++ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ R
n+1 | x ∈ dom f, f(x) ≤ t}

epi f

f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

extension: if f is convex, then

f(Ez) ≤ Ef(z)

for any random variable z

basic inequality is special case with discrete distribution

Prob(z = x) = θ, Prob(z = y) = 1− θ
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Operations that preserve convexity

To recapitulate: what are the practical methods to prove that a function is
convex?

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show

∇2f(x) � 0
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Operations that preserve convexity

To recapitulate: what are the practical methods to prove that a function is
convex?

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show

∇2f(x) � 0

There’s also another a third one

3. show that f is obtained from simple convex functions by operations that
preserve convexity
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Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

• log barrier for linear inequalities

f(x) = −
m
∑

i=1

log(bi − aTi x), dom f = {x | aTi x < bi, i = 1, . . . ,m}

• norm of affine function: f(x) = ‖Ax+ b‖
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Log-Barrier
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Quizz

if f1, . . . , fm are convex, then f(x) = min{f1(x), . . . , fm(x)} is convex?

1. Yes 2. No

if f1, . . . , fm are concave, then f(x) = min{f1(x), . . . , fm(x)} is concave?

1. Yes 2. No
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Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

• sum of r largest components of x ∈ R
n:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

examples

• support function of a set C: SC(x) = supy∈C yTx is convex

• distance to farthest point in a set C:

f(x) = sup
y∈C

‖x− y‖

• maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax(X) = sup
‖y‖2=1

yTXy
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Composition with scalar functions

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h nondecreasing
g concave, h convex, h nonincreasing

• proof (for n = 1, differentiable g, h). Can be extended to non-differentiable g, h

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → R
k and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h nondecreasing in each argument
gi concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h). Can be extended to non-differentiable g, h

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x)

examples

•
∑m

i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex
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Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

• f(x, y) = xTAx+ 2xTBy + yTCy with

[

A B
BT C

]

� 0, C ≻ 0

minimizing over y gives g(x) = infy f(x, y) = xT (A−BC−1BT )x

g is convex, hence Schur complement A− BC−1BT � 0

• distance to a set: dist(x, S) = infy∈S ‖x− y‖ is convex if S is convex
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Perspective

the perspective of a function f : Rn → R is the function g : Rn × R → R,

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

g is convex if f is convex

examples

• f(x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

• negative logarithm f(x) = − log x is convex; hence relative entropy
g(x, t) = t log t− t log x is convex on R

2
++
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The conjugate function

the (Fenchel) conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ at y is the maximum gap between yx and f over all possible x.

• f∗ is convex (even if f is not)

• will be useful when we study duality.
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The conjugate function

examples

• negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{

−1− log(−y) y < 0
∞ otherwise

• strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn
++

f∗(y) = sup
x
(yTx− (1/2)xTQx)

=
1

2
yTQ−1y
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Optimization problem in standard form
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : R
n → R is the objective or cost function

• fi : R
n → R, i = 1, . . . ,m, are the inequality constraint functions

• hi : R
n → R are the equality constraint functions

optimal value:

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)

• p⋆ = −∞ if problem is unbounded below
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Optimal and locally optimal points

• x is feasible if x ∈ dom f0 and it satisfies the constraints

• a feasible x is optimal if f0(x) = p⋆;

• Xopt is the set of optimal points

• x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R
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Examples (with n = 1, m = p = 0)

−6 −4 −2 0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5

x

1/x

f0(x) = 1/x, dom f0 = R++: p
⋆ = 0, no optimal point
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Examples (with n = 1, m = p = 0)

0 1 2 3 4 5 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

−log(x)

f0(x) = − log x, dom f0 = R++: p
⋆ = −∞
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Examples (with n = 1, m = p = 0)

0 1 2 3 4 5 6

0

2

4

6

8

10

12

x

x log(x)

f0(x) = x log x, dom f0 = R++: p
⋆ = −1/e, x = 1/e is optimal
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Examples (with n = 1, m = p = 0)

−6 −4 −2 0 2 4 6

−100

−50

0

50

100

x

x3−12 x

f0(x) = x3 − 12x, p⋆ = −∞, local optimum at x = 2
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =
m
⋂

i=0

dom fi ∩

p
⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize f0(x) = −
∑k

i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• p⋆ = 0 if constraints are feasible; any feasible x is optimal

• p⋆ = ∞ if constraints are infeasible
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