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Convex Functions
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Optimization

Most slides in this lecture are taken from
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http://www.stanford.edu/~boyd/cvxbook/

Quizz

if C and C" are two convex sets, then C U ("’ is convex?

1. Yes 2. No
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Quizz

if C' and C' are two convex sets, then C' U C’ is convex?

1. Yes 2. No

if C; is a family of convex sets, then ()., C; is convex

el
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Quizz

3 2 1
The matrix M = |2 5 3] is positive definite?
1 2 3]
1. Yes 2. No
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Quizz

3 2 1

The matrix M = [2 5 3] is positive definite?
1 2 8]
1. Yes 2. No

has to be symmetric at least...
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Quizz

3 2 1
The matrix M = |2 5 2] is positive definite?
1 2 8
1. Yes 2. No
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Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.q., very long computation time, or not
always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems
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Convex functions
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Short outline

e basic properties and examples
e operations that preserve convexity

e the conjugate function
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Definition
f:R™ — R is convex if dom f is a convex set and

fllz+ (1 —0)y) <O0f(z)+(1-0)f(y)

forallz,y edom f, 0 <60 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fO0x+(1—-0)y) <0f(z)+ (1-0)f(y)

forxz,ycdomf, x £y, 0<6<1

CO&ML
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Examples on R

convex:

e affine: ax +bon R, forany a,b € R

e exponential: e®*, for any a € R

e powers: z*on R, , fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on Ry |

concave:
e affine: ax +bon R, forany a,b € R
e powers: z¥on Ry, for0 < a <1

e |logarithm: logx on R,

CO&ML
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Quizz

A norm is a function ||-|| that satisfies

e |z]| > 0;

z|| =0 if and only if z =0

o |[tz|| = [t| ||z]| for t € R

o |z +yll <zl + [yl

A norm is a convex function?

1. Yes 2. No

CO&ML
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Quizz

A norm is a function ||-|| that satisfies

e |z]| > 0;

z|| =0 if and only if z =0

o |[tz|| = [t| ||z]| for t € R

o |z +yll <zl + [yl

A norm is a convex function?

1. Yes 2. No
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Examples on R™ and R"™*"

affine functions are convex and concave; all norms are convex

examples on R"
e affine function f(x) = alz + b

e norms: ||z||, = (020, |z:|P)Y/P for p > 1,

T||0o = maxy ||

examples on R"*™ (m x n matrices)

e affine function

F(X) = Tr(ATX) + b= i zn: A X5+ b

i=1 j=1

e spectral (maximum singular value) norm

FIX) = [ X|l2 = 0max(X) = Amax(XTX))1/2
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Restriction of a convex function to a line

f :R™ — R is convex if and only if the function g : R — R,

g(t) = f(z + tv), domg = {t |z + tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

CO&ML
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Restriction of a convex function to a line

example. f:S" — R with f(X) =logdet X, dom X =S’

g(t) =logdet(X +tV) = logdet X + logdet(I +tX 2V X~1/2)

= logdet X + Z log(1+t\;)
i=1

where \; are the eigenvalues of X-1/2y x—1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave

CO&ML
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First-order condition

f is differentiable if dom f is open and the gradient

- (4242, 4)

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) = f(z) + Vf(z)' (y—x) forall z,y € dom f

f(y)
flx) + V(@) (y— =)

(z, f(z))

first-order approximation of f is global underestimator.
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V*f(z) € S™,

V2f($)ij =
exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V?f(xz) €S} forall x € dom f

o if V2f(x) > 0 (also written V*f(x) € S™ ) for all 2 € dom f,
then f is strictly convex

CO&ML
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Examples

quadratic function: f(z) = (1/2)2? Pz + ¢’z +r (with P € S™)

Vif(x) =P

Vf(z) =Pz +q,

convex if P >0

| Az — b]3

least-squares objective: f(z)

convex (for any A)
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log-sum-exp: f(z) =log > ,_, expzy is convex

1 i 1
V2f(x) = T diag(z) — (]lgdZ)QZZT (zr, = exp xk)

to show V2f(z) = 0, we must verify that vI'V2f(x)v > 0 for all v:

(2 k Zk’vi)(Zk zk) — (2 Uk 2k)” >0

v Ve f(x)v = 5, ) >

since (3, vkzk)* < (32, zrv3) (D2, 2x) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = ([],_, zx)'/™ on R is concave

(similar proof as for log-sum-exp)

CO&ML
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Epigraph and sublevel set
a-sublevel set of f : R" — R:

Co={zedom | f(z) < a}
sublevel sets of convex functions are convex (converse is false)
epigraph of f : R" — R:

epi f = {(z,t) € R"™ |z € dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set

CO&ML
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

fr+(1—-0)y) <0f(x)+(1—-0)f(y)

extension: if f is convex, then

f(Bz) <Ef(z)

for any random variable z

basic inequality is special case with discrete distribution

Prob(z =z) =6, Prob(z=y)=1-26
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Operations that preserve convexity

To recapitulate: what are the practical methods to prove that a function is
convex’

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show

Vif(z) = 0

CO&ML
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Operations that preserve convexity

To recapitulate: what are the practical methods to prove that a function is
convex’

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show

Vif(z) = 0

There's also another a third one

3. show that f is obtained from simple convex functions by operations that
preserve convexity
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if fi, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

f(x) = —Zlog(bi —alx), domf={z|a]z<b,i=1,...,m}
i=1

e norm of affine function: f(x) = ||Az + b||

CO&ML
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Quizz

if f1, ..., fm are convex, then f(x) = min{fi(x),...
1. Yes 2. No

if f1, ..., fm are concave, then f(z) = min{fi(x),...
1. Yes 2. No

CO&ML

, fm(z)} is convex?

, fm(x)} is concave?
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex

examples

e piecewise-linear function: f(r) = max;—1 . m(alx + b;) is convex

e sum of r largest components of x € R":
f(@) = 2py+ 2 + -+ 2

is convex (x; is ith largest component of x)
proof:

flx) =max{z; +zH+ - +x;, |1 <i1 <ia < - <ip <n}

CO&ML
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Pointwise supremum

if f(x,y) is convex in x for each y € A, then

g(z) = sup f(z,y)
yeA

IS convex

examples
e support function of a set C: Sc(x) = sup,c¢ y''z is convex

e distance to farthest point in a set C"

f(z) = sup ||z -y
yel

e maximum eigenvalue of symmetric matrix: for X € S”,

Amax(X) = sup yTXy
lyll2=1

CO&ML
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Composition with scalar functions

composition of g : R - R and h: R — R:

: g convex, h convex, h nondecreasing

f is convex | . :
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h). Can be extended to non-differentiable g, h
f"(x) = h"(g(x))g'(x)* + I'(g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples
e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition
composition of g : R” — R and h : RF — R:

f(z) = h(g(z)) = h(g1(x), g2(@), - . ., gr())

£ is convex if g; convex, h convex, h nondecreasing in each argument
| vex | . Lo
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h). Can be extended to non-differentiable g, h

" (@) = g'(2)"V*h(g(2))g'(z) + Vh(g(x))" g" (x)

examples
e > " logg(x)is concave if g; are concave and positive

e log> " expg(x) is convex if g; are convex
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Minimization
if f(z,y) is convex in (x,y) and C' is a convex set, then

g9(x) = inf f(z,y)

yeC

IS convex

examples
o f(z,y) =al Az + 22T By + y! Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(z,y) = 21 (A — BC~ !Bz
g is convex, hence Schur complement A — BC~1BT > 0

e distance to a set: dist(x,S) = inf,cg ||z — y|| is convex if S is convex

CO&ML
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Perspective
the perspective of a function f : R™ — R is the function g : R” x R — R,
g(a,t) = tf(x/t),  domg={(z,t)|x/t € dom f, t >0}

g is convex if f is convex

examples
e f(z)=ax'zis convex; hence g(z,t) = xlx/t is convex for t > 0

e negative logarithm f(x) = —logx is convex; hence relative entropy
g(x,t) =tlogt — tlog x is convex on R2 |
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The conjugate function

the (Fenchel) conjugate of a function f is

f*y)= sup (y'z— f(z))

xedom f

f(x)
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e f* at y is the maximum gap between yx and f over all possible .
e f*is convex (even if f is not)

e will be useful when we study duality.

CO&ML

34



The conjugate function

examples
e negative logarithm f(z) = —logx
f*(y) = sup(zy +logz)
x>0
_ ) —1-log(-y) y<0
- 00 otherwise

e strictly convex quadratic f(z) = (1/2)z'Qz with @ € ST},
fy) = sup(y'z—(1/2)z" Qx)

1T—l
= 2yQ Y

CO&ML
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Optimization problem in standard form

CO&ML
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Optimization problem in standard form

minimize  fo(x)
subject to  fi(x) <0, i=1,....m
hi(x) =0, 1

e © € R" is the optimization variable
e fo: R" — R is the objective or cost function
e f;:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions

optimal value:

= inf{fo(z) | fi(x) <0, i=1,...,m, hi(z) =0, i=1,...,p}

e p* = ¢ if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below

CO&ML
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e r is feasible if x € dom f; and it satisfies the constraints

e a feasible x is optimal if fo(x) = p*;

Optimal and locally optimal points

*

o X pt Is the set of optimal points

e x is locally optimal if there is an R > 0 such that x is optimal for

CO&ML

minimize (over z) fo(2)

subject to

fZ(Z)SO, izl,...,m,
Iz =zl < R

cey P
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Examples (with n =1, m = p = 0)

fo(x) =1/z, dom fy = R, : p* =0, no optimal point
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Examples (with n =1, m = p = 0)

—log(x)

fO(x) = _IOgZC, domfo — R++: p* — —00
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Examples (with n =1, m = p = 0)

x log(x)

fo(x) =zlogz, dom fo =R, : p* = —1/e, x = 1/e is optimal
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Examples (with n =1, m = p = 0)

x3-12 x

100

50

-50+

-100

fo(x) = 23 — 122, p* = —o0, local optimum at z = 2
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
x €D = ﬂdomfz- N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Z,lf:l log(b; — al'x)

is an unconstrained problem with implicit constraints a! z < b;

CO&ML
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Feasibility problem

find

T
subject to  fi(x) <0, i=1,....,m
hi(x) =0, i=1,...,p

can be considered a special case of the general problem with fo(x) =0
minimize 0
subject to  fi(x) <0, i=1,...
hi(z) =0,

p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible
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