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Why do we need optimization in machine learning

• We want to find the best possible decision w.r.t. a problem

• In a supervised setting for instance, we want to learn a map X → Y

• We consider a set of candidates F for such a decision

f

X → Y

F
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Why do we need optimization in machine learning

f

X → Y

F

• Quantify how well a candidate function in F fits with the database

◦ define a data-dependent criterion Cdata

◦ Typically, given a function f , Cdata(f) is big if f not accurate on the data.

• Given both F and Cdata, a method to find an optimal candidate:

minf∈F Cdata(f).
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Quizz: Regression
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Scatter plot of Rent vs. Surface

 

 

 
y = 0.13*x + 2.4
y = − 0.0033*x2 + 0.35*x − 0.71
y = 6.2e−05*x3 − 0.01*x2 + 0.59*x − 3.1
y = 1.4e−06*x4 − 0.00016*x3 + 0.0016*x2 + 0.33*x − 1.2
y = − 1.8e−07*x5 + 3.7e−05*x4 − 0.0028*x3 + 0.092*x2 − 1.1*x + 7.1

apartment
   linear
   quadratic
   cubic
   4th degree
   5th degree

Does Least-Square regression fall into this approach?

1. Yes 2. No
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Quizz: k-nearest neighbors

X

Does k-nearest neighbors fall into this approach?

1. Yes 2. No
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Quizz: SVM

Does the SVM fall into this approach?

1. Yes 2. No
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What is optimization?

• A general formulation for optimization problem is that of defining

◦ unknown variables x1, x2, · · · , xn ∈ X1 × X2 × · · · × Xn, and solve

minimize (or mazimize) f(x1, x2, · · · , xn),

subject to fi(x1, x2, · · · , xn)

{

<,>

=

≤,≥

}

bi, i = 1, 2, · · · ,m;
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What is optimization?

• A general formulation for optimization problem is that of defining

◦ unknown variables x1, x2, · · · , xn ∈ X1 × X2 × · · · × Xn, and solve

minimize (or mazimize) f(x1, x2, · · · , xn),

subject to fi(x1, x2, · · · , xn)

{

<,>

=

≤,≥

}

bi, i = 1, 2, · · · ,m;

• where

◦ the bi ∈ R

◦ functions f (objective) and g1, g2, · · · , gm (constraints) are functions

X1 ×X2 × · · · × Xn → R
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What is optimization?

• A general formulation for optimization problem is that of defining

◦ unknown variables x1, x2, · · · , xn ∈ X1 × X2 × · · · × Xn, and solve

minimize (or mazimize) f(x1, x2, · · · , xn),

subject to fi(x1, x2, · · · , xn)

{

<,>

=

≤,≥

}

bi, i = 1, 2, · · · ,m;

• the sets Xi need not be the same, as Xi might be

◦ R scalar numbers,
◦ Z integers,
◦ S+

n positive definite matrices,
◦ strings of letters,
◦ etc.

• When the Xi are different, the adjective mixed usually comes in.
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Optimization & Mathematical Programming

• Optimization is field of applied mathematics on its own.

• Also called Mathematical Programming.

Mathematical Programming is not about programming code for mathematics!
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Optimization & Mathematical Programming

Mathematical Programming is not about programming code for mathematics!

• George Dantzig, who proposed the “first” optimization algorithm, explains:

◦ The military refer to their various plans or proposed schedules of

training, logistical supply and deployment of combat units as a program.

When I first analyzed the Air Force planning problem and saw that it

could be formulated as a system of linear inequalities, I called my paper

Programming in a Linear Structure. Note that the term program was used

for linear programs long before it was used as the set of instructions

used by a computer. In the early days, these instructions were called

codes.
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Mathematical Programming

◦ In the summer of 1948, Koopmans and I visited the Rand Corporation. One

day we took a stroll along the Santa Monica beach. Koopmans said: Why

not shorten Programming in a Linear Structure to Linear Programming? I

replied: Thats it! From now on that will be its name. Later that day I

gave a talk at Rand, entitled Linear Programming; years later Tucker

shortened it to Linear Program.

◦ The term Mathematical Programming is due to Robert Dorfman of Harvard,

who felt as early as 1949 that the term Linear Programming was too

restrictive.
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Mathematical Programming

• Today mathematical programming = optimization. A relatively new
discipline

◦ What seems to characterize the pre-1947 era was lack of any interest

in trying to optimize. T. Motzkin in his scholarly thesis written in

1936 cites only 42 papers on linear inequality systems, none of which

mentioned an objective function.
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Before we move on to some reminders

• Keep in mind that optimization is hard. very hard in general.

• In 60 years, we have gone from nothing to quite a few successes.

• But always keep in mind that most problems are intractable.

• For some particular problems there is hope: CONVEX problems
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Before we move on to some reminders

Evaluation = Programming Assignments
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Reminders

Sources: Stephen Boyd’s slides
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Reminders: Convex set

line segment between x1 and x2: all points

{x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}

convex set: contains line segment between any two points in the set

C is convex ⇔ ∀x1, x2 ∈ C, 0 ≤ λ ≤ 1; λx1 + (1− λ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = λ1x1 + λ2x2 + · · ·+ λkxk

with λ1 + · · ·+ λk = 1, λi ≥ 0

convex hull 〈S〉: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = λ1x1 + λ2x2

with λ1 ≥ 0, λ2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set

CO&ML 19



Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex
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Norm balls and norm cones

norm: a function ‖·‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖·‖ is general (unspecified) norm; ‖·‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}
Euclidean norm cone is called second-
order cone

x1
x2

t
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0.5

1

cones are convex
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Usual norms for vectors in R
d

• l2 norm:

‖x‖2 =
√
xTx =

√

√

√

√

d
∑

i=1

x2
i

• l1 norm:

‖x‖1 =
d
∑

i=1

|xi|

• lp norm:

‖x‖p =

(

d
∑

i=1

|xi|p
)

1
p
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Quizz: lp norms

The unit ball of the lp norm is {x | ‖x‖p ≤ 1}

The unit ball of the lp norm is convex.

1. True 2. False
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ R
m×n, C ∈ R

p×n, � is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

• Sn is set of symmetric n× n matrices

• Sn
+ = {X ∈ Sn | X � 0}: positive semidefinite n× n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

Sn
+ is a convex cone

• Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite n× n matrices

example:

[

x y

y z

]

∈ S2
+

xy

z

0

0.5

1

−1

0

1

0

0.5

1
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x− xc)
TP−1(x− xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

other representation: {xc +Au | ‖u‖2 ≤ 1} with A square and nonsingular
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optimization problems

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• x = (x1, . . . , xn): optimization variables

• f0 : R
n → R: objective function

• fi : R
n → R, i = 1, . . . ,m: constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that satisfy the
constraints
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Quizz

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

If an optimization problem has an optimal solution x⋆, this solution is unique.

1. True 2. False
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Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, maximum area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error
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Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or not
always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems

CO&ML 30



Least-squares

minimize ‖Ax− b‖22

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ R
k×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)
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Linear programming

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F is cost
of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization
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