
Convexity & Machine Learning
Assignment 1

Please send me

• the original script detailing your computations.

– The script must be documented, i.e. the code corresponding to
each answer must be delimited and your loops/variables briefly
explained.

– The script must be executable: by just running your script, all
results should appear automatically.

– Do not use external functions, everything must be coded by your-
self using elementary linear algebra functions.

• A document (in pdf format) which will contain your answer and your
analysis. Provide illustrations and graphs but do not put code in the
pdf.

This homework is due December 16th (Fri.) 23:59 PM

Send your homework at mcuturi@i.kyoto-u.ac.jp

Preliminary questions on convexity

• Suppose f : Rd → R is convex and bounded, that is, there exists
M ∈ R such that ∀x, f(x) ≤ M . What can you say about f?

• Kullback-Leibler Divergence: Let Dkl be the Kullback-Leibler di-
vergence between two vectors x, y ∈ R

d
+, defined as

Dkl(x, y) =
∑

i=1n

(

xi log(
xi

yi
)− xi + yi

)

.

Prove the inequality
Dkl(x, y) ≥ 0

and show that Dkl(x, y) = 0 if and only if x = y. hint use the fact that
Dkl(x, y) = f(x)− f(y)−∇f(y)T (x− y) with f(x) =

∑d

i=1 xi log xi.
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• Give examples of two functions f and g from R to R, where f is strictly
convex and g is strictly concave, with (1) f+g convex, (2) f+g concave
and (3) f + g neither convex nor concave respectively.

Gradient Descent, Logistic Regression

• Gradient Descent: Implement gradient descent (Boyd and Vandenberghe, 2005,
Algo.9.3) with a backtracking line search (Boyd and Vandenberghe, 2005,
Algo.9.2). Your function should consider six parameters:

– f (the function to minimize)

– ∇f (the gradient)

– η (the stopping threshold);

– α and β (the parameters of the backtracking line search);

– x0 (the starting point).

Your function should check that the parameters α < 1
2
and 0 < β < 1.

Your function should terminate once the stopping condition

‖∇f(x)‖2 ≤ η

is verified, or whenever the algorithm has reached the maximal number
of iterations tmax = 200. Your function should return a list of triplets
(x, f(x), i) for each iteration which describes:

– the current point x,

– its objective function value f(x),

– the total number of calls to f or∇f which have taken place during
this iteration (including inside the line search).

• Logistic Regression as a Convex Programming Problem: We
consider now a simple binary classification problem where we are given
a database of pairs of observations {(xj , yj)}j=1,...,N (also called a train-
ing set) which we study using logistic regression (you can read the
short reminder on logistic regression in the appendix of this homework
if you are not familiar with this technique).
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In such a setting, the training set is used to estimate the parameters
c and b by defining the likelihood function of (c, b) with respect to the
dataset,

L(c, b) =

N
∏

j=1

g(cTxj + b)yj (1− g(cTxj + b))1−yj .

The parameters c and b can be estimated using the Maximum Likeli-
hood principle, that is by maximizing L(c, b).

– Show that maximizing the likelihood is equivalent to minimizing
the following function

min
c,b

−
N
∑

j=1

yj(c
Txj + b)− log(1 + ec

T
xj+b). (1)

– Show that the function in Equation (1) is a convex function of
R

d+1.

• Estimating Logistic Parameters Using Gradient Descent: Down-
load the Wisconsin Breast Cancer1 binary classification dataset.

– Split randomly the dataset into 2 subsets, the training subset and
the test subset.

– Compute estimates for vectors c and b using your implementation
of gradient descent to obtain a solution to Equation (1). Use
arbitrary values for your gradient descent parameters.

– Provide now a report of the following quantities,

∗ log-likelihood on train set,

∗ train classification error,

∗ test classification error,

∗ total number of function calls,

for different parameters of α, β.

1http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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Appendix: A short reminder on Logistic Regression

We consider pairs (x, y) where a feature vector x ∈ R
n is paired with a label

y ∈ {0, 1}. The feature vector might for instance describe the behavior of a
user on a website (number of visited pages, time spent etc.) and the label
describe whether the user has bought a product or not. We would like to
define a tool that can predict y based only on x.

In order to do so, we suppose that there is a probability density p(X, Y )
on couples (x, y) ∈ R

d × {0, 1} which can quantify this relationship. The
ratio

r(x) =
p(Y = 1|X = x)

p(Y = 0|X = x)

is called the odds-ratio of a given point x and measures how times more
likely it is that, given a point x, this point has a label 1 rather than a label 0.
Obviously, if r(x) > 1, then it is more likely that y = 1 than y = 0 for that
particular feature vector x. On the contrary, if r(x) < 1, then one is tempted
to guess that y = 0 than y = 1. In other words, if for a given observation x,

log
p(Y = 1|X = x)

p(Y = 0|X = x)
,

{

> 0 then y = 1 is the likely answer

< 0 then y = 0 is the likely answer

Logistic regression is a classification tool which assumes that the log-odds
ratio r follows a linear relationship

log
p(Y = 1|X = x)

p(Y = 0|X = x)
≈ cTx+ b,

where c ∈ R
d and b ∈ R.

Since p(Y = 0|X = x) = 1− p(Y = 1|X = x), we hence have

log
p(Y = 1|X = x)

1− p(Y = 1|X = x)
= cTx + b,

which implies that, using the notation g(u) = 1
1+e−u ,

p(Y = 1|X = x) =
1

e−(cTx+b) + 1
= g(cTx+ b).
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