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Summary of Today’s Lecture

• Shannon’s framework for information

• Shannon’s entropy
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Starting point...

Not everything that can be counted counts,

and not everything that counts can be counted.

(Einstein)

• For things which can be counted, the science which provides a framework to

◦ store (efficiently) that information,
◦ communicate (efficiently) that information between individuals/computers,

is a branch of

◦ mathematics,
◦ statistics,
◦ electrical engineering, etc.

called information theory
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Some History

• Unlike most disciplines, the exact birth-date of information theory is known.

• C.E. Shannon, ”A Mathematical Theory of Communication”, Bell System
Technical Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948

Claude Shannon in 1948 (32 years old)

• Shannon proposed both a new problem and a few answers.
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Claude Shannon, April 30, 1916 February 24, 2001

• Groundbreaking paper in 1937 as master student, A Symbolic Analysis of Relay
and Switching Circuits, Transactions of IEEE, 1938.

• After graduate studies at MIT, Work at

◦ Princeton, (Von Neumann, Einstein)
◦ Bell labs, (Turing during war) mainly work on cryptography
◦ back to MIT from 50’s

• Closer to us, first recipient of the Kyoto prize in 1985,
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Shannon’s framework

• this diagram, from the original paper, defines the usual problems of
communication

◦ how to convert efficiently a message into a signal (transmitter)
◦ how to decipher efficiently the signal back into a message (receiver)
◦ how to cope with noisy environments which alter the signal.

• before Shannon, different approaches for each type of signal

◦ telegraph,
◦ texts,
◦ codes,

• after Shannon, a unifying theory on all information.
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A short movie by Charles and Ray Eames

• The Eames couple are most known for their industrial design

• this documentary was shot in 1953...

• Merely 5 years after Shannon’s breakthrough!
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Shannon’s framework through examples

• Example: you do N coin flips,

×N
and record the results in a long word

b1 · · · bN

where each bi is either Tails or Heads, that is bi ∈ {T,H}.

• To keep things a bit more simple we use {0, 1} instead of {T,H}.

• You want to send the outcome of this experiment of N coin tosses to someone.
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Information and Entropy

• if N = 1000 you can write 0111011100 · · · 101 on a piece of paper and send it

• More handy approach: punch holes in cards,
...with the convention “hole=1”, “no hole=0”.

• to each hole corresponds one coin toss, ordered by time.

• The information given by each location (hole/no hole) on the card is a bit.

bit = binary digit, coined down in 1948 by Shannon (originally Tukey in ’37)
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Information and Entropy

• if N = 1, 000, 000, is there an efficient way to transmit this information?

• intuitively, this is hopeless:

◦ each coin toss is independent,
◦ each coin toss has two equally likely outcomes, 1 or 0.
◦ you must provide the information for each coin toss.

• If your coin tosses is very atypical... e.g.

"I made 1,000,000 coin tosses and only had Heads"

...you may get away with a very short message...

• unfortunately, you will more likely need 1, 000, 000 bits of information.

• we will show this later.
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Information and Entropy

Suppose the coin is actually biased

• Suppose that the probability of tails (0) is p0 = 1/3 & heads (1) is p1 = 2/3.

• Yet we know that, on average, we will have to punch more holes than not, as

p1 = 2/3 > p0.

... twice more 1’s than 0’s... we might consider punching 0’s instead!!

• yet, if we send the exact result, b1b2 · · · bN , we still need 1, 000, 000 bits.

What about taking advantage of the differences in probabilities
p0 6= p1 to design a shorter message?
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Information and Entropy

• Simple approach: since the events are independent...
...for all i ≤ N − 1, the probability that























p(bibi+1 = 00) = 1/9

p(bibi+1 = 01) = 2/9

p(bibi+1 = 10) = 2/9

p(bibi+1 = 11) = 4/9

• We could also consider 8 triplets, 16quadruplets, etc.

• Let’s rewrite our tosses b1 · · · bN two by two, using some notations:

◦ a = 00, b = 01, c = 10, d = 11.
◦ We could send sequences of one of four letters, abdcabb · · · .

• no gain so far... each letter needs 500.000× 2 bits.
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Information and Entropy

• remember that






















p(bibi+1 = a) = 1/9

p(bibi+1 = b) = 2/9

p(bibi+1 = c) = 2/9

p(bibi+1 = d) = 4/9

• Following the same idea, we will have, on average, a lot more d’s than b or c’s
and few a’s.

• Let’s translate back a, b, c, d back into binary codes. Setting for instance1

◦ d = 1,
◦ c = 10,
◦ b = 110,
◦ a = 111.

• Intuition: LONG codewords for unlikely tokens.

1This is called a Huffman code
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Information and Entropy

• In our example,
1011101001110111 (16 bits)
⇓
cdccbdbd (2 × bits)
⇓
101101011011101 (15 bits)
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Information and Entropy

• On average, as N goes to infinity and given N tosses,

◦ the naive technique needs N bits,
◦ our trick requires N

2
× (1pd + 2pc + 3pb + 3pd) = N

2
(4

9
+ 4

9
+ 6

9
+ 3

9
) = 17

18
N

• not so bad for such a simple trick.

• We could actually take advantage further of this trick by considering triplets,
quadruplets etc...

• Shannon’s theorem tells us something far more powerful

Kyoto-U fall 2010, Intro. to Info. Sci. : Info. Theory. 15



Information and Entropy

• For a random variable X taking values in a finite set X with probability p, we
call the entropy of X ,

H(X) = −
∑

x∈X

p(x) log2 p(x)

N i.i.d. random variables each with entropy H(X)
can be compressed into more than NH(X) bits with negligible risk

of information loss, as N tends to infinity;
but conversely, if they are compressed into fewer than NH(X) bits

it is virtually certain that information will be lost.

• In the previous example,

H(b) = −p1 log2 p1 − p0 log2 p0 = −
2

3
log2

(

2

3

)

−
1

3
log2

(

1

3

)

≈ 0.918

• We had 17/18 = 0.944... getting closer.
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Entropy for binary random variables

• Two outcomes for a random variable X , 0 or 1.

• Two probabilities, p0 = p(X = 0) and p1 = p(X = 1).

• Moreover, p0 = p1 − 1, hence H(X) = −p1 log p1 − (1 − p1) log(1 − p1).

• This is the curve represented below. H(X) = 1
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• When p1 = 1

2
, the entropy is at its maximum...

...which is why we cannot do better, on average, than actually send
1, 000, 000 bits if we want to communicate 1, 000, 000 bits...
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Information and Entropy

Whatever the method used to design the signal,
if the word is made up of N observations

of i.i.d random variables distributed like X ,
the signal cannot be shorter on average than NH(X).

• Shannon’s source code theorem gives a lower bound.

• The reference length becomes NH(X),

• The main question of coding and compression theory:

how to define compression mechanisms (codes)
to transform messages into shorter signals

so as to get as close as possible to Shannon’s bound
without necessarily knowing p?
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