
Introduction to Information Sciences

Natural Language Processing

Formal Languages

mcuturi@i.kyoto-u.ac.jp

Introduction to Information Sciences: NLP 1

Reminder

• Language: “A language is a collection of sentences of finite length all
constructed from a finite alphabet of symbols.” L ⊂ Σ⋆, L ∈ P(Σ⋆)

• Grammar: “A grammar can be regarded as a device that enumerates the
sentences of a language.”

◦ T , a finite set of terminal symbols,
◦ N , a finite set of nonterminal symbols,
◦ S ∈ N , a start symbol which is a nonterminal symbol,
◦ P a finite set of production rules:

Rule : · · · → · · ·

where the dots are arbitrary symbols.

• A grammar of L can be regarded as a function whose range is exactly L

Introduction to Information Sciences: NLP 2

Summary of Today’s Lecture

• Chomsky Hierarchy

• Turing Machines

• Type-0, Type-1 & Type-2 languages in more detail

• Relationships between Type-2 grammars and natural language.

Inspiration for some of the slides: A. McCallum’s online lectures, Wikipedia, various online

contents

Introduction to Information Sciences: NLP 3

Chomsky Hierarchy of Formal Languages

Reminder

• Type-0 : all grammars.

• Type-1: αAβ → αγβ where γ cannot be empty. S → ε is allowed iff S does
not appear on the right side of a rule.

• Type-2 A → γ where γ a string of terminals and nonterminals.

• Type-3: Nonterminals can only appear on one side, S → ε is allowed iff S does
not appear on the right side of a rule.

Grammar Languages Automaton Production rules (constraints)

Type-0 Recursively enumerable Turing machine α → β(no restrictions)

Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine αAβ → αγβ

Type-2 Context-free Non-deterministic pushdown automaton A → γ

Type-3 Regular Finite state automaton A → a and A → aB

taken from Noam Chomsky,On Certain Formal Properties of Grammars, Information and Control, Vol 2, 1959

Introduction to Information Sciences: NLP 4

Chomsky Hierarchy of Formal Languages

• This table defines a set of inclusions:

• Let’s review more closely the meaning of the table line-by-line

Introduction to Information Sciences: NLP 5

Type-0 Languages

Introduction to Information Sciences: NLP 6

Turing machines

• A Turing machine is a 7-tuple M = {Q,Γ, b,Σ, δ, q0, F} where

◦ Q is a finite, non-empty set of states
◦ Γ is a finite, non-empty set of symbols
◦ b ∈ Γ is the blank symbol (the only symbol allowed to occur on the tape

infinitely often at any step during the computation)
◦ Σ ⊆ Γ \ {b} is the set of input symbols
◦ q0 ∈ Q is the initial state
◦ F ⊆ Q is the set of final or accepting states.
◦ δ : Γ×{Q \F} → Q× {Γ∪ {<, >}} is the transition function, where < is

left shift, > is right shift.

• This is one of many possible formulations.
...Why? because a TM is a philosophical and a mathematical object

• Differently interpretations of Turing’s original formulation.

Introduction to Information Sciences: NLP 7

in Alan Turing’s mind

...an infinite memory capacity obtained in the form of an

infinite tape marked out into squares, on each of which a

symbol could be printed. At any moment there is one symbol in

the machine; it is called the scanned symbol. The machine can

alter the scanned symbol and its behavior is in part determined

by that symbol, but the symbols on the tape elsewhere do not

affect the behavior of the machine. However, the tape can be

moved back and forth through the machine, this being one of the

elementary operations of the machine. Any symbol on the tape

may therefore eventually have an innings.

(A.M. Turing, Intelligent Machinery, 1948)

Introduction to Information Sciences: NLP 8

Turing machines

• A Turing machine is executed on a tape of infinite length. The tape only
contains symbols of Γ.

• The TM accepts a tape if it reaches a final/accepting state after a finite
number of iterations.

Introduction to Information Sciences: NLP 9

Turing Machines

• Let’s see a Turing machine in action

http://web.bvu.edu/faculty/schweller/Turing/Turing.html

• Compare with this one displayed on this video

Introduction to Information Sciences: NLP 10

Alternative Formulations of Turing Machines

• Γ × δ : Q \ F → Q × Γ × {<, |, >}: replaces and moves (or stands still)

• Multiple (but finite number of) tapes ⇒ boils down to single tape

◦ Comparable to N countable, then Z, Q, Qn etc. are countable too.
◦ Multiple tape can be expressed as single tapes, but far heavier notation.

δ : Γk × {Q \ F} → Q × (Γ × {<, >})k.

• Nondeterministic: action at each iteration is one of many possible

◦ Different actions may apply for the same combination of state and symbol.

δ ⊆ (Γ × {Q\F}) × (Q × {Γ ∪ {<, >}})

is now a “transition relation”.
◦ When a tape is fed to the TM, and this TM can reach an accepting state for

one out of all possible paths, then the TM is said to accept that tape.

Introduction to Information Sciences: NLP 11

Type-0 Languages & Turing machines

unrestricted grammars = type 0 languages?

• proof ⇒: build a TM that can decide whether a word w is in L(G).

• consider a two-tape Turing machine.

◦ tape t1 contains the input word w to be tested,
◦ tape t2 is used by the machine to generate words from G.

• The Turing machine then does the following:

◦ Start at the left of t2 and repeatedly choose to move right or select the current
position on the tape.

◦ Nondeterministically choose a production β → γ from the productions in G.
◦ If β appears at some position on the second tape, replace β by γ at that point,

shifting symbols if necessary.
◦ Compare the resulting word on t2 to the word on t1:

⊲ they match, then the Turing machine accepts the word.
⊲ they don’t: back to step 1.

Introduction to Information Sciences: NLP 12

Type-1 Languages

Introduction to Information Sciences: NLP 13

Type-1 Languages, Context-sensitive

• Some restriction on the rules:

◦ αAβ → αγβ where γ cannot be empty.
◦ S → ε is allowed iff S does not appear on the right side of a rule.

Context-sensitive
m

transformation of non-terminal symbols may depend on their context.

• Example: generative grammar of CS language {anbncn : n ≥ 1}:

1 : S → aSBC

2 : S → aBC

3 : CB → HB

4 : HB → HC

5 : HC → BC

6 : aB → ab

7 : bB → bb

8 : bC → bc

9 : cC → cc

Introduction to Information Sciences: NLP 14

Type-1 Languages, Context-sensitive

• The generation chain for aaa bbb ccc is:

S

→1 aSBC

→1 aaSBCBC

→2 aaaBCBCBC

→3 aaaBHBCBC

→4 aaaBHCCBC

→5 aaaBBCCBC

→3 aaaBBCHBC

→4 aaaBBCHCC

→5 aaaBBCBCC

→3 aaaBBHBCC

→4 aaaBBHCCC

→5 aaaBBBCCC

→6 aaabBBCCC

→7 aaabbBCCC

→7 aaabbbCCC

→8 aaabbbcCC

→9 aaabbbccC

→9 aaabbbccc

Introduction to Information Sciences: NLP 15

Type-1 Languages, Context-sensitive

A few remarks

• |αAβ| ≤ |αγβ|

• At each iteration of a production rule, the word’s length can only grow.

• Hence CSGs are called non-contracting grammars.

• As usual, same language can be generated with simpler grammar

◦ Example: consider the following CSG

S → aSBc

S → abc

cB → Bc

bB → bb

◦ It also generates {anbncn : n ≥ 1}

Introduction to Information Sciences: NLP 16

Type-1 Languages & Linear Bounded Automaton

• A LBA is a restricted form of TM that satisfies the following conditions.

1. The set of symbols Γ has two special symbols: left and right endmarkers.
2. endmarkers can only appear once.
3. The LBA cannot move beyond the left & right endmarkers, and it

cannot modify the endmarkers

• More realistic to represent a computer (finite memory).

• “Context-sensitive grammars ⇔ LBA” was proved by Kuroda in 60’s.
S.-Y. Kuroda, Classes of languages and linear-bounded automata, Information and Control, 7(2): 207223, June 1964.

• Basic idea of the proof: comes from non-contracting property.

• To check if x is in the language,

◦ generate all possible words of length ≤ |x|
◦ check if they are equal to x

Introduction to Information Sciences: NLP 17

Type-2 Languages

Introduction to Information Sciences: NLP 18

Type-2 Languages

• Defined by context-free grammars

• Production rules A → γ where γ is a string of terminals and nonterminals.

• “free” : non-terminal symbols can only have straightforward transformations

A few examples

• Well-formed parentheses

◦ two terminal symbols (and), one nonterminal symbol S.
◦ The production rules are

S → SS; S → (S); S → ()

◦ The first rule allows S’s to multiply; the second rule allows Ss to become
enclosed by matching parentheses; and the third rule terminates the
recursion.

◦ Example: S → SS → SSS → (S)SS → ((S))SS → ((SS))S(S) →
((()S))S(S) → ((()()))S(S) → ((()()))()(S) → ((()()))()(())

Introduction to Information Sciences: NLP 19

Type-2 Languages

• Well-formed nested parentheses and square brackets

◦ terminal { symbols []() and nonterminal S.
◦ production rules:

S → SS, S → (),
S → (S), S → [],

S → [S]

◦ Example:
([[[()()[][]]]([])])

• There is no context-free grammar that generates all balanced sequences of
two different types of parentheses, as for example:

[[[[((((]]]]))))(([))(([))([)(])(])(])

Introduction to Information Sciences: NLP 20

Parenthesis: Finite State Machines/Automaton

• A finite state machine 5-uple (Σ, Q, q0, δ, F), where:

◦ Σ is the input alphabet (a finite, non-empty set of symbols).
◦ Q is a finite, non-empty set of states.
◦ q0 is the initial state, an element of Q.
◦ δ is the state-transition function: δ : Σ × Q → Q

◦ F is the set of final states, a (possibly empty) subset of Q.

• Simply put, a finite-state machine is a Turing machine without the ability to

◦ modify an infinite tape,
◦ move freely in the infinite tape, can only go from left to right on the tape.

Introduction to Information Sciences: NLP 21

Push-down Automaton

• A push-down automaton is a FSM with an additional tool to play with: a stack

• A stack is

◦ a structure to hold data,
◦ where data can be piled in and recovered according to 2 simple rules:

⊲ The data can be pushed in the stack,
⊲ The data can be poped out from the top the stack and recovered.

Introduction to Information Sciences: NLP 22

Push-down Automaton

• The push-down automaton can use that stack to modify its behaviour (namely
to change the output of δ):

1. They can use the top of the stack to decide which transition to take.
2. They can manipulate (push/pop) the stack as part of performing a transition.

• The stack can be compated to a restricted kind of tape for TM’s.

Introduction to Information Sciences: NLP 23

Push-down Automaton

• A PDA is a 7-uple, M = (Q,Σ, Γ, δ, q0, Z, F) where

◦ Q is a finite set of states,
◦ Σis a finite set of symbols, the input alphabet,
◦ Γ is a finite set which is called the stack alphabet,
◦ δ is a mapping Q × (Σ ∪ {ε}) × Γ → Q × Γ∗, the transition relation, where ε

is the empty string.
◦ q0 ∈ Q is the start state
◦ Z ∈ Γ is the initial stack symbol
◦ F ⊆ Q is the set of final/accepting states

• An element (p, a,A, q, α) ∈ δ is a transition of M .

Introduction to Information Sciences: NLP 24

Type-2 Languages & Push-down Automaton

• Every context-free grammar can be transformed into an equivalent pushdown
automaton

• given a context-free grammar, the PDA is constructed as follows.

◦ (1, ε, A, 1, α) for each rule A → α (expand).
◦ (1, a, a, 1, ε) for each terminal symbol a (match).

• The other way round is more difficult to prove.

Introduction to Information Sciences: NLP 25

Type-3 Languages

Introduction to Information Sciences: NLP 26

Type-3 Language

• Type-3 languages are called regular languages.

◦ Nonterminals can only appear on one side, A → a and A → aB.
◦ S → ε is allowed iff S does not appear on the right side of a rule.

• Regular languages produce words which can be recognized by FSM.

• A slighlty more algebraic perspective:

◦ a mapping f from a monoid1 (M,+,0) to a monoid (P,×, 1)
is a monoid homomorphism if

∀a, b ∈ M, f(a + b) = f(a) × f(b); f(0) = 1,

◦ Every regular language can be generated as the set

{f−1(s), s ∈ S} ⊂ Σ⋆,

where S ⊂ M , M being a finite monoid.

• Finite languages are a subset of regular languages.

1a set equipped with an associate binary operation and a neutral element for that operation

Introduction to Information Sciences: NLP 27

Back to NLP

NLP = Type 0,1,2 or 3 language?

Introduction to Information Sciences: NLP 28

Language structure and meaning

• The question is open... somewhere between type-1 and type-3.

• We’ll settle for type-2 for the end of the lecture.

• Our target: map the meaning of a sentence is onto language structures.

• e.g. in English, a few examples of such mappings

{Thing The dog} is {Place in the garden}
{Thing The dog} is {Property fierce}
{Action{Thing The dog} is chasing {Thing the cat}}
{State{Thing The dog} was sitting {Place in the garden} {Time yesterday}}
{Action{Thing We} ran { Path out into the water}}
{Action{Thing The dog} barked {Property/Manner loudly}}
{Action{Thing The dog} barked {Property/Amount nonstop for five hours}}

Introduction to Information Sciences: NLP 29

Segmenting meaning: use a typology for parts of speech

• Example of such a typology

Name Concept Example
Noun Names of things boy, cat, truth
Verb Action or state become, hit

Pronoun Used for noun become, hit
Adverb Modifies V, Adj, Adv sadly, very

Adjective Modifies noun happy, clever
Conjunction Joins things and, but, while
Preposition Relation of N to, from, into
Interjection An outcry ouch, oh, alas, psst

• Intuitively, we use a “substitution test” to guess whether the classification
makes sense

The {sad, intelligent, green, fat, ...} one is in the corner.

Introduction to Information Sciences: NLP 30

Constituency

Sentences have parts, some of which appear to have subparts.
These groupings of words that go together are called constituents.

• Consider the sentences

He ran into the man with a car
He ran into {the man with a car}
He ran into {the man} {with a car}

You could not go to her party
You {could not} go to her party
You could {not go} to her party

• We need tools that can highlight such constituents.

Introduction to Information Sciences: NLP 31

Constituent phrases

• Constituents are named based on the word that heads them.

• Examples:

◦ the man from Amherst: Noun Phrase (NP) → the head man is a noun
◦ extremely clever : Adjective Phrase (AP) → the head clever is an adjective
◦ down the river : Prepositional Phrase (PP) → the head down is a preposition
◦ killed the rabbit: Verb Phrase (VP) → the head killed is a verb

• Note that a word is a constituent, albeit a little one.

• Sometimes words also act as phrases. In:

◦ Joe grew potatoes.
◦ Compared with: The man from Amherst grew beautiful russet potatoes.

Introduction to Information Sciences: NLP 32

Constituents appears in language

They appear in similar environments (e.g. before a verb)

◦ Kermit the frog comes on stage
◦ They come to Massachusetts every summer
◦ December twenty-sixth comes after Christmas
◦ The reason he is running for president comes out only now.

...but not each individual word in the constituent

◦ The comes our... is comes out... for comes out...

Introduction to Information Sciences: NLP 33

Constituents appears in language

Constituents can be placed in different locations

• Consider the Prepositional phrase (PP): On December twenty-sixth

◦ On December twenty-sixth Id like to fly to Florida.
◦ Id like to fly on December twenty-sixth to Florida.
◦ Id like to fly to Florida on December twenty-sixth.

• ...but not split apart

◦ On December Id like to fly twenty-sixth to Florida.
◦ On Id like to fly December twenty-sixth to Florida.

Introduction to Information Sciences: NLP 34

Context Free Grammars and Constituency

CFG’s are the most common way of modeling constituency.

CFG = Context-Free Grammar = Phrase Structure Grammar = BNF =
Backus-Naur Form

• Parenthesis: Backus-Naur is another notation for CFG.

• Here is a BN form for adresses in the US.

<postal-address> ::= <name-part> <street-address> <zip-part>

<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL>

| <personal-part> <name-part>

<personal-part> ::= <first-name> | <initial> "."

<street-address> ::= <house-num> <street-name> <opt-apt-num> <EOL>

<zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

<opt-jr-part> ::= "Sr." | "Jr." | <roman-numeral> | ""

Introduction to Information Sciences: NLP 35

Example of a Context Free Grammar in a Natural Language

Setting

• a CFG G defined by {T, N, S, R} where

T = {that, this, a, the, man, book, flight, meal, include, read, does}
N = {S, NP, NOM, VP, Det, Noun, Verb, Aux}
S = S

R = {
S → NP VP
S → Aux NP VP
S → VP
NP → Det NOM
NOM → Noun
NOM → Noun NOM
VP → Verb
VP → Verb NP
Det → that / this / a / the
Noun → book / flight / meal / man
Verb → book / include / read
Aux → does}

Introduction to Information Sciences: NLP 36

A simple application of the rules gives

S → NP VP → Det NOM VP → The NOM VP
→ The Noun VP → The man VP → The man Verb NP

→ The man read NP → The man read Det NOM → The man read this NOM
→ The man read this Noun → The man read this book

• The parse tree which corresponds to this example:

Introduction to Information Sciences: NLP 37

CFG’s can capture some notion of recursion

• Example of seemingly endless recursion of embedded prepositional phrases:
PP → Prep NP
NP → Noun PP

• {S The mailman ate his {N P lunch {P P with his friend {P P from the
cleaning staff {P P of the building {P P at the intersection {P P on the north
end {P P of town}}}}}}}.

• Automaton to parse Type-2 languages: push-down automaton

• A lot of attention given to these, as well as languages that are closer to Type-1.

Introduction to Information Sciences: NLP 38

