Introduction to Information Sciences

Natural Language Processing Formal Languages

mcuturi@i.kyoto-u.ac.jp

Summary

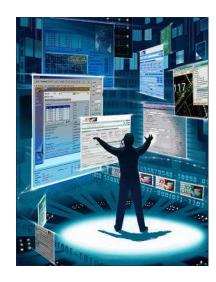
- Illustrate the difficulties tackled by computational linguistics
 - Define a few of the problems commonly studied
- Introduce formal language theory & Automata
 - formal languages
 - o formal grammars
 - Chomsky hierarchy

Sources for these slides: A. McCallum's (UMass) online lectures, Wikipedia, Jurafsky/Martin

We start with an example: HAL

• An example taken from a famous movie and book:

• Let's check a few scenes:



2001 was shot in 1968

A few years after 2001, what sounds familiar, if not outdated about HAL?

• Graphic capabilities?.. We have much better. The future rather looks like this...

• Chess? 2006, Deep Fritz and before, late 90's, Deep Blue

2001 was shot in 1968

What still sounds difficult to achieve is HAL's articulated syntax...

David Bowman:

Open the pod bay doors, Hal.

HAL:

I'm sorry, Dave, Im afraid I cant do that.

David Bowman:

What are you talking about, Hal?

...HAL:

I know that you and Frank were planning to disconnect me, and I'm afraid that's something I cannot allow to happen.

- The machine is also displaying intelligence. See Turing's test.
- Yet, why does language seem more difficult to reach than chess?

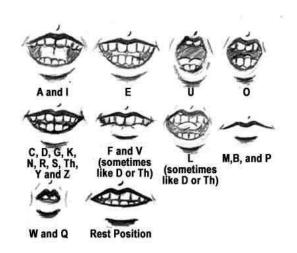
Layers of Computational Linguistics

Complex and multilayered system, each layer a different study field

- 1. Phonetics
- 2. Phonology
- 3. Morphology
- 4. Syntax
- 5. Semantics
- 6. Pragmatics
- 7. Discourse

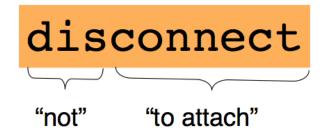
Phonetics

Study of language sounds, physical aspects.


	THE INTERNATIONAL PHONETIC ALPHABET (revised to 1993)															
CONSONANTS (PULMONIC)																
	Bila	abial	Labiodental	Dent	tal	Alveolar	Postalveolar	Retro	oflex	Palatal	Velar	Uvular	Pharynge	al	Glot	tal
Plosive	р	b				t d		t	d	c j	k g	q G			?	
Nasal		m	m			n			η	n	ŋ	N				
Trill		В				r						R				
Tap or Flap						ſ			r							
Fricative	ф	β	f v	θ	ð	s z	∫ 3	ş	Z,	çj	х ү	Х к	ħς		h	ĥ
Lateral fricative						łţ										
Approximant			υ			J			ન	j	щ					
Lateral approximant						1			l	У	L					

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible. CONSONANTS (NON-PULMONIC) SUPRASEGMENTALS Primary stress ,found'tisən é or 7 Extra Voiced implosives Ejectives Bilabial as in: Bilabial e* ! (Post)alveolar t' Dental/alveolar Half-long Extra-short ĕ ‡ Palatoalveolar of Velar k' Velar Svllable break 11.ækt Alveolar lateral & Uvular S' Alveolar fricative Minor (foot) group VOWELS Major (intonation) group Linking (absence of a break) Back - **ພ**• u DIACRITICS Diacritics may be placed above a symbol with a descender, e.g. $\mathring{\eta}$ Breathy voiced b a Voiceless Close-mid Creaky voiced b a Voiced ş ţ Apical t d h Aspirated th dh Laminal Open-mid $\varepsilon \wedge \infty - 3 \wedge 3 - \Lambda + 3$ More rounded Labialized Nasalized t^j d^j Palatalized Less rounded Nasal release Where symbols appear in pairs, the one to the right represents a rounded vowel Y Velarized ty dy Advanced Lateral release OTHER SYMBOLS Pharyngealized to do No audible release d M Voiceless labial-velar fricative & Z Alveolo-palatal fricatives Centralized Velarized or pharyngealized † W Voiced labial-velar approximant Alveolar lateral flap ${\sf U}$ Voiced labial-palatal approximant ${\sf f}$ Simulataneous ${\sf f}$ and ${\sf X}$ Mid-centralized **&** e (1 = voiced alveolar fricative) H Voiceless epiglottal fricative Affricates and double articula-Lowered $e (\beta = \text{voiced bilabial approximant})$ tions can be represented by two Yoiced epiglottal fricative symbols joined by a tie bar Non-syllabic Advanced Tongue Root P Epiglottal plosive if necessary kp ts Rhoticity ę Retracted Tongue Root

Phonology


Study of sound **structure** of language.

- Identify units of sounds, in **different** human languages.
 - o phonemes,
 - o syllables,
- Phonemes are a major difference between animal language and human language.
- Useful for instance in animations. Phonemes in english:

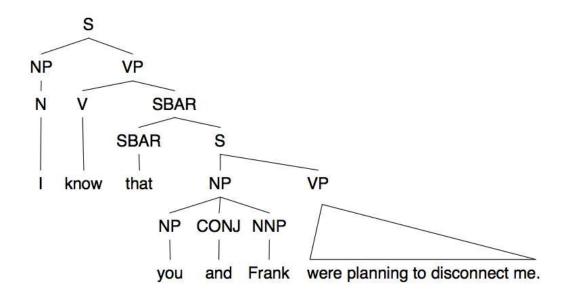
Morphology

Study of morphemes, the minimal units of linguistic form and meaning

• Important for compounded languages e.g. Turkish:

uygarlastiramadiklarimizdanmissinizcasina

uygar las tir ama dik lar imiz dan mis siniz casina


(behaving) as if you are among those whom we could not civilize

• In chinese, chinese characters = morphems = basic semantic unit

Syntax

• From words to sentences:

I know that you and Frank were planning to disconnect me.

• Of course, the structure (the syntax) of the following sentence is also correct

You know me-Frank and I were planning to disconnect that.

Semantics

Study of meaning, the minimal units of linguistic form and meaning

• The meaning of

I know that you and Frank were planning to disconnect me.

can be summarized as

- o an action, disconnect,
- o performed by an actor, you and Franck,
- on an *object*, **me**
- In computer science, different syntaxes for the same operation:

```
x += y (C, Java, Perl, Python, Ruby, etc.)
x := x + y (Pascal)
LET X = X + Y (early BASIC)
x = x + y (MATLAB, most BASIC dialects, Fortran)
(incf x y) (Common Lisp)
```

Pragmatics

The study of how language is used to accomplish goals within a given context

• What is the practical outcome of a sentence as

Im sorry, Dave, Im afraid I cant do that.

given the contex?

- The sentence "You have a green light" can have different meanings:
 - It could mean you are holding a green light bulb.
 - Or that you have a green light to drive your car.
 - o Or it could be indicating that you can go ahead with the project.
 - Or that your body has a green glow

Discourse

Study of linguistic units which are larger than single utterances

Capture the different turns, threads, changes in the conversation

David Bowman:

Open the pod bay doors, Hal.

HAL:

Im sorry, Dave, Im afraid I cant do that.

David Bowman:

What are you talking about, Hal?

...HAL:

I know that you and Frank were planning to disconnect me, and I'm afraid that's something I cannot allow to happen.

Languages contain all possible utterances

- Here are sentences in the english language,
 - The man took the book.
 - This sentence is not true.
 - The horse was galloping in the prairie
- Here are sentences which are not part of it
 - The true the eat lot looks bird.
 - sense any make not does sentence this
 - dfdlkfh lkjer leREQ ARlkjdf
- A few different kinds of language:
 - Natural languages language that arises in an **unpremeditated** manner as the product of the human innate facility to communicate. Can be spoken, signed, written etc..
 - \circ Constructed languages constructed languages as auxiliary languages such as **esperanto** or artistic languages (e.g. in fiction)
 - Formal languages: languages that computers can parse and understand.
- The latter is the one we will study in this lecture.

Seen from a computer, a language is a set

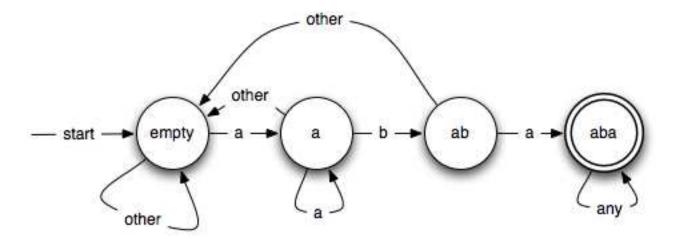
We start with the formal idea of alphabets, a set of tokens

$$\begin{split} \Sigma &= \{a,b,c,d,e,f,g,\cdots,z,,\cdots\} \text{ or,} \\ \Sigma &= \{0,1\} \text{ or,} \\ \Sigma &= \{0,1,2,3,4,5,6,7,8,9,+,-,*,/,\ln,\exp,\cdots\} \,. \end{split}$$

and use the Kleene operator as a shortcut for

$$\Sigma^* = \{x \in \Sigma^n, n \in \mathbf{N}\}.$$

• A formal language L is a **subset** of Σ^* .


Example of a language

Rules can describe a formal language L

- Consider the language L defined as
 - \circ The alphabet = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, =:
 - \circ Every nonempty string that does not contain + or = and does not start with 0 is in L.
 - The string 0 is in L.
 - \circ A string containing = is in L if and only if there is exactly one =, and it separates two valid strings in L.
 - \circ A string containing + but not = is in L if and only if every + in the string separates two valid strings in L.
 - No string is in L other than those implied by the previous rules.
- With such rules,
 - ∘ "23+4=555" is in L,
 - o "d433+2e2" is not,
 - \circ "=234=+" is not.
- no meaning yet though. Only notion of belonging or not to a language.

Formal languages = typology of such rules

- Other ways to define a language from an alphabet:
- For instance, a language can be given as
 - all strings generated by a formal grammar;
 - all strings accepted by some automaton, in the example the automaton can generate the language of all words containing at least "aba" once

- o all strings described or matched by a particular regular expression;
- o all strings for which some decision procedure (an algorithm that asks a sequence of related YES/NO questions) produces the answer YES.

Typical questions asked about such formalisms

- What is their expressive power? (Can formalism X describe every language that formalism Y can describe? Can it describe other languages?)
- What is their recognizability? (How difficult is it to decide whether a given word belongs to a language described by formalism X?)
- What is their comparability? (How difficult is it to decide whether two languages, one described in formalism X and one in formalism Y, or in X again, are actually the same language?).

Formal grammar

A formal grammar is a set of rules which generate formal languages, defined by:

- a finite set of terminal symbols,
- a finite set of nonterminal symbols,
- a start symbol which is a nonterminal symbol,
- a finite set of production rules:

Rule: $\cdots \rightarrow \cdots$

where the dots are arbitrary symbols.

Formal grammar

- How?
 - Start with the start symbol.
 - Apply any rule by replacing an occurrence of the symbols on the left-hand side of the rule with those that appear on the right-hand side.
- A sequence of rule applications is called a derivation.

Such a grammar defines the formal language: all words consisting solely of terminal symbols which can be reached by a derivation from the start symbol.

- Usually, NONTERMINALS are represented by uppercase letters,
- terminals by lowercase letters,
- the start symbol by S.

Formal grammar Example

- For example, the grammar with
 - \circ terminals $\{a,b\}$,
 - \circ nonterminals $\{S, A, B\}$, starting S,
 - production rules

$$\triangleright S \rightarrow ABS$$

ightharpoonup S
ightharpoonup arepsilon (where arepsilon is the empty string)

$$\triangleright BA \rightarrow AB$$

$$\triangleright BS \rightarrow b$$

$$\triangleright Bb \rightarrow bb$$

$$\triangleright Ab \rightarrow ab$$

$$\triangleright Aa \rightarrow aa$$

defines the language of all words of the form a^nb^n .

- simpler grammar that defines the same language:
 - \circ Terminals $\{a,b\}$,
 - \circ Nonterminals $\{S\}$, Start symbol S, Production rules

$$\triangleright S \rightarrow aSb$$

$$\triangleright S\varepsilon$$

Chomsky Hierarchy of Formal Languages

- Type-0 : all grammars.
- Type-1: $\alpha A\beta \to \alpha\gamma\beta$ where γ cannot be empty. $S \to \varepsilon$ is allowed iff S does not appear on the right side of a rule.
- Type-2 $A \to \gamma$ where γ a string of terminals and nonterminals.
- Type-3: Nonterminals can only appear on one side, $S \to \varepsilon$ is allowed iff S does not appear on the right side of a rule.

Grammar	Languages	Automaton	Production rules (constraints)			
Type-0	Recursively enumerable	Turing machine	lpha ightarrow eta(no restrictions)			
Type-1	Context-sensitive	Linear-bounded non-deterministic Turing machine	$lpha Aeta ightarrow lpha \gamma eta$			
Type-2	Context-free	Non-deterministic pushdown automaton	$A o \gamma$			
Type-3	Regular	Finite state automaton	A o a and $A o aB$			

- Most programming languages are generated by Type-2 rules.
- Trade-off between size of language & capacity to parse it.