
KAIST Machine Learning Tutorial

Metrics and Kernels

A few recent topics

Marco Cuturi - Kyoto University

KAIST ML Tutorial - Jan. 15 2013 1

Data deluge

ACM, Dec’08 Economist Feb’10

IEEE Spectrum, Feb’11 Popular Science Nov. 2011 AMS/ASA Apr’12

KAIST ML Tutorial - Jan. 15 2013 2

Quantity and Complexity
Social lending

KAIST ML Tutorial - Jan. 15 2013 3

Quantity and Complexity
Social lending

KAIST ML Tutorial - Jan. 15 2013 4

Quantity and Complexity
Social lending

KAIST ML Tutorial - Jan. 15 2013 5

Address Complexity in Machine Learning

• Embed structures in metric spaces

• Embed structures in Hilbert spaces

• Create feature vectors: embed in R
d.

KAIST ML Tutorial - Jan. 15 2013 6

7→ metric Space

d(x, y)

(X ,d)

Retrieval & Clustering - Nearest Neighbor Methods

+ implicit map, flexibility / −− limited operations

KAIST ML Tutorial - Jan. 15 2013 7

7→ Hilbert Space

k(x, y) = 〈Φ(x),Φ(y) 〉H, d(x, y) = ‖Φ(x)− Φ(y)‖H

(X ,k) ∝ R
∞

Kernel Methods, Support Vector Machines, Gaussian Processes ...

++ kernel trick, convexity/ − limited operations

KAIST ML Tutorial - Jan. 15 2013 8

7→ Feature Vectors

x = [x1 x2 x3 · · · xd]
T

R
d

Linear Models - High-dimensional statistics - Deep Learning ...

++ fast, feature selection/ − explicit map

KAIST ML Tutorial - Jan. 15 2013 9

Outline of this Tutorial

Talk about distance and kernel based methods

• Start with distances;

◦ why distances in machine learning? example of k-nearest neighbors;

◦ On learning a good distance for vectors with Mahalanobis distances

KAIST ML Tutorial - Jan. 15 2013 10

Outline of this Tutorial

• Continue with kernels

◦ define positive definite kernels

◦ introduce support vector machines to illustrate

• Conclude by mentioning the interface between kernels and distances

KAIST ML Tutorial - Jan. 15 2013 11

Distances

KAIST ML Tutorial - Jan. 15 2013 12

Distances

Definition: A distance defined on a set X is a function

d : X × X → R+

(x, y) 7→ d(x, y)

such that ∀ x, y, z ∈ X ,

• d(x, y) = d(y, x), symmetry

• d(x, y) = 0⇔ x = y, definiteness

• d(x, z) ≤ d(x, y) + d(y, z), triangle inequality

z
d(x, z)

x

y

d(y, z)

d(x, y)

KAIST ML Tutorial - Jan. 15 2013 13

Why Distances in Machine Learning?

• In machine learning problems, we consider training sets of points

T = {x1, x2, · · · , xN}

and use these points to “learn” a way to handle new observations x.

For distance and kernel based algorithms,
learning from a training set T

actually means use T to check how similar x is
to the instances xi in T

and make a decision based on that.

similar? for distance based tools → how small d(x, xi) is.

KAIST ML Tutorial - Jan. 15 2013 14

Example: k-nearest neighbors

A very elementary prediction tool

• Used in supervised tasks: given a point x, guess its label y.

• All it takes to use k-nearest neighbors is

◦ A date sample of labeled points {(xi, yi), i = 1, · · · , N}.
◦ A distance function for two points d(x, x′).

◦ a parameter k that defines the size of the neighborhood.

How does it work?

KAIST ML Tutorial - Jan. 15 2013 15

Example: k-nearest neighbors

X

A database represented as a bunch of colored points

KAIST ML Tutorial - Jan. 15 2013 16

Example: k-nearest neighbors

X

Points are split between blue and red points.

KAIST ML Tutorial - Jan. 15 2013 17

Example: k-nearest neighbors

X

Here we have a new point to label... blue or red?

KAIST ML Tutorial - Jan. 15 2013 18

Example: k-nearest neighbors

X

Look at 5 closest neighbors... that is set k = 5.

KAIST ML Tutorial - Jan. 15 2013 19

Example: k-nearest neighbors

X

4 blue and 1 red: majority vote → 5-nearest neighbors’ guess is blue.

KAIST ML Tutorial - Jan. 15 2013 20

k nearest neighbors

• A computer program cannot “see” the dataset the way we just did.

• Neither do we when d > 3...

• A computer would only rely on

◦ the dataset {(xi, yi), i = 1, · · · , N}.
◦ the distance function d.

◦ the parameter k.

• How would this work in practice?

• Suppose N = 100 and k = 3, labels are blue or red.

KAIST ML Tutorial - Jan. 15 2013 21

k nearest neighbors

• How would this work in practice?

◦ get a new point x... we want to guess its label

KAIST ML Tutorial - Jan. 15 2013 22

k nearest neighbors

• How would this work in practice?

◦ get a new point x.

◦ Compute a vector of distances













d(x, x1)
d(x, x2)
d(x, x3)

...
d(x, x100)













.

KAIST ML Tutorial - Jan. 15 2013 23

k nearest neighbors

• How would this work in practice?

◦ get a new point x.

◦ Compute a vector of distances













d(x, x1)
d(x, x2)
d(x, x3)

...
d(x, x100)













=













0.32
4.56
0.112
...

2.892













.

KAIST ML Tutorial - Jan. 15 2013 24

k nearest neighbors

• How would this work in practice?

◦ get a new point x.

◦ Compute a vector of distances













d(x, x1)
d(x, x2)
d(x, x3)

...
d(x, x100)













=













0.32
4.56
0.112
...

2.892













.

◦ Sort (at the top) this vector of distances













d(x, x3)
d(x, x86)
d(x, x13)

...
d(x, x2)













=













0.112
0.132
0.133
...

4.56













.

KAIST ML Tutorial - Jan. 15 2013 25

k nearest neighbors

• How would this work in practice?

◦ get a new point x.

◦ Compute a vector of distances













d(x, x1)
d(x, x2)
d(x, x3)

...
d(x, x100)













=













0.32
4.56
0.112
...

2.892













.

◦ Sort (at the top) this vector of distances













d(x, x3)
d(x, x86)
d(x, x13)

...
d(x, x2)













=













0.112
0.132
0.133
...

4.56













.

◦ Select the three closest neighbors x3, x86, x13.

KAIST ML Tutorial - Jan. 15 2013 26

k nearest neighbors

• How would this work in practice?

◦ get a new point x.

◦ Compute a vector of distances













d(x, x1)
d(x, x2)
d(x, x3)

...
d(x, x100)













=













0.32
4.56
0.112
...

2.892













.

◦ Sort (at the top) this vector of distances













d(x, x3)
d(x, x86)
d(x, x13)

...
d(x, x2)













=













0.112
0.132
0.133
...

4.56













.

◦ Select the three closest neighbors x3, x86, x13 with their labels.

KAIST ML Tutorial - Jan. 15 2013 27

k nearest neighbors

• How would this work in practice?

◦ get a new point x.

◦ Compute a vector of distances













d(x, x1)
d(x, x2)
d(x, x3)

...
d(x, x100)













=













0.32
4.56
0.112
...

2.892













.

◦ Sort (at the top) this vector of distances













d(x, x3)
d(x, x86)
d(x, x13)

...
d(x, x2)













=













0.112
0.132
0.133
...

4.56













.

◦ Select the three closest neighbors x3, x86, x13 with their labels.

The 3-nearest neighbor algorithm outputs a red label for x.

KAIST ML Tutorial - Jan. 15 2013 28

k nearest neighbors

3 blocks of k-nearest neighbor:

• database of colored points { x1,x2,x3,x4,x5,x6,x7,x8,x9,· · · ,x13,· · · ,x100}

• neighborhood size k = 3

• a distance function d.

the dataset is fixed. k is a simple parameter.
the distance is the most challenging to define.

Can we fine tune this distance so that we get improved results?

KAIST ML Tutorial - Jan. 15 2013 29

Choosing a Distance

for k-nearest neighbors

KAIST ML Tutorial - Jan. 15 2013 30

Choosing a Distance

For many applications,
both training points {x1, · · · , xN} and observations x

are vectors of features,

x =









x1

x2
...
xd









∈ R
d.

What distances can we use for vectors?

KAIST ML Tutorial - Jan. 15 2013 31

Choosing a Distance

• Euclidean/l2 distance in R
d

d2(x, x
′) =

√

√

√

√

d
∑

i=1

(xi − x′
i)
2.

KAIST ML Tutorial - Jan. 15 2013 32

Choosing a Distance

• Euclidean/l2 distance in R
d

d2(x, x
′) =

√

√

√

√

d
∑

i=1

(xi − x′
i)
2 =

√

(x− x′)T (x− x)

• Manhattan/l1 distance in R
d

d1(x, x
′) =

d
∑

i=1

|xi − x′
i|.

KAIST ML Tutorial - Jan. 15 2013 33

Choosing a Distance

• Euclidean/l2 distance in R
d

d2(x, x
′) =

√

√

√

√

d
∑

i=1

(xi − x′
i)
2.

• Manhattan/l1 distance in R
d

d1(x, x
′) =

d
∑

i=1

|xi − x′
i|.

• Infinite/l∞ distance in R
d

d∞(x, x′) = max
i=1..d

|xi − x′
i|.

KAIST ML Tutorial - Jan. 15 2013 34

Choosing a Distance

• Euclidean/l2 distance in R
d

d2(x, x
′) =

√

√

√

√

d
∑

i=1

(xi − x′
i)
2.

• Manhattan/l1 distance in R
d

d1(x, x
′) =

d
∑

i=1

|xi − x′
i|.

• Infinite/l∞ distance in R
d

d∞(x, x′) = max
i=1..d

|xi − x′
i|.

• the list of possibilities is very long [Encyclopedia of Distances, Deza & Deza, 2009]

KAIST ML Tutorial - Jan. 15 2013 35

Learning Distances

Rather than choose, learn using data.

Consider a
parameterized and rich enough family of distances

rather than a
long and predefined list of candidates

• always preferable if easy to implement and optimize...

• this is the goal of metric learning

KAIST ML Tutorial - Jan. 15 2013 36

Learning Distances: Starting Point

• The Euclidean distance,

d2(x, x
′) =

√

√

√

√

d
∑

i=1

(xi − x′
i)
2 =

√

(x− x′)T (x− x′)

can be seen as a particular case of Mahalanobis distances (40’s),

dΩ(x, x′) =
√

(x− x′)TΩ(x− x′).

a family of distances parameterized by a positive definite matrix Ω in R
d×d.

• Indeed, d2 = dI.

KAIST ML Tutorial - Jan. 15 2013 37

Positive Definiteness

dΩ(x, x′) =
√

(x− x′)TΩ(x− x′).

a family of distances parameterized by a positive definite matrix Ω in R
d×d.

• Why require that Ω is symmetric positive definite?

◦ if Ω is not positive definite → ∃x ∈ R
d | xTΩx < 0, then for any y,

dΩ(y+ x, y) = xTΩx < 0 !

• If Ω is positive semidefinite and ∃x 6= 0|xTΩx = 0, dΩ is a pseudo-metric.

• This is usually ok for most algorithms.

KAIST ML Tutorial - Jan. 15 2013 38

Positive Definiteness

dΩ(x, x′) =
√

(x− x′)TΩ(x− x′).

a family of distances parameterized by a positive definite matrix Ω in R
d×d.

• Note also that if Ω is positive definite, then ∃L such that

Ω = LTL (Cholesky),

then dΩ(x, x′) = d2(Lx, Lx
′).

• Choosing a Mahalanobis distance ⇔ defining an arbitrary linear map L.

KAIST ML Tutorial - Jan. 15 2013 39

Learning Mahalanobis Distances

• Imagine you would like to use Mahalanobis distances,

dΩ(x, x′) =
√

(x− x′)TΩ(x− x′).

question : How to set Ω?

KAIST ML Tutorial - Jan. 15 2013 40

Learning Mahalanobis Distances

• Imagine you would like to use Mahalanobis distances,

dΩ(x, x′) =
√

(x− x′)TΩ(x− x′).

question : How to set Ω?

• Up to 10 years ago, basically set Ω = Σ̂−1, inverse of empirical variance.

• Computed using a dataset {x1, · · · , xN} and

Σ̂ =
1

N − 1

N
∑

i=1

x̃ix̃
T
i ,

where x̃i
def
= xi − x̄ and x̄ = 1

N

∑N
i=1 xi

• also known as whitening the data.

KAIST ML Tutorial - Jan. 15 2013 41

Learning Mahalanobis Distances

• Imagine you would like to use Mahalanobis distances,

dΩ(x, x′) =
√

(x− x′)TΩ(x− x′).

question : How to set Ω?

• New answer in recent machine learning research (>2003),

◦ Distance Learning (Xing et al. 2003)

◦ Pseudo-Metric Online Learning Algorithm (Shalev-Schwartz et al., 2004)

◦ Large Margin Nearest Neighbor (Weinberger & Saul, 2006),

◦ Information Theoric Metric Learning (Kulis et al., 2007),

◦ etc.

Works well for many datasets and vectors...

KAIST ML Tutorial - Jan. 15 2013 42

Basic Idea Behind Metric Learning

KAIST ML Tutorial - Jan. 15 2013 43

Learning a parameter M

Consider neighborhood of the ith datum induced by dM

(Σd, dM)

ri

KAIST ML Tutorial - Jan. 15 2013 44

Learning a parameter M

Assume we have side-information, typically labels

(Σd, dM)

ri

KAIST ML Tutorial - Jan. 15 2013 45

Learning a parameter M

change M to M + δM to improve local geometry

(Σd, dM+δM)

ri

trick proposed in the metric learning literature: [Xing et al. ’03, Weinberger Saul ’06]

KAIST ML Tutorial - Jan. 15 2013 46

Mathematical Tools: Semidefinite

Programming

KAIST ML Tutorial - Jan. 15 2013 47

Linear Programs

• x ∈ R
d, A ∈ R

d×m,b ∈ R
m.

• Consider the positive orthant Rd
+

minimize cTx
subject to Ax{=,≤,≥}b

x ∈ R
d
+

• History: simplex method (Danzig,’47), interior point methods (80’s)

KAIST ML Tutorial - Jan. 15 2013 48

Conic Linear Program

• x ∈ R
d, A ∈ R

d×m,b ∈ R
m.

• Consider an arbitrary cone K.

minimize cTx
subject to Ax{=,≤,≥}b

x ∈ K

• History: 90’s. Interior point methods.

• When K is the cone of positive semidefinite matrices, semidefinite program.

KAIST ML Tutorial - Jan. 15 2013 49

In practice

Inputs: { dΩ(xi, xj), xi, xj ∈ T}

KAIST ML Tutorial - Jan. 15 2013 50

In practice

Inputs: { dΩ(xi, xj), xi, xj ∈ T}

• As a function of Ω, dΩ(x, x′) is concave w.r.t. Ω

dΩ(x, x′) =
√

〈Ω, (x− x′)(x− x′)T 〉.

KAIST ML Tutorial - Jan. 15 2013 51

In practice

Inputs: { dΩ(xi, xj), xi, xj ∈ T}

• As a function of Ω, dΩ(x, x′) is concave w.r.t. Ω

dΩ(x, x′) =
√

〈Ω, (x− x′)(x− x′)T 〉.

• squared distance (not the distance itself) is linear w.r.t. Ω

dΩ(x, x′)2 = 〈Ω, (x− x′)(x− x′)T 〉.

KAIST ML Tutorial - Jan. 15 2013 52

In practice

Inputs: { dΩ(xi, xj), xi, xj ∈ T}

• squared distance (not the distance itself) is linear w.r.t. Ω

dΩ(x, x′)2 = 〈Ω, (x− x′)(x− x′)T 〉.

• for two points x, y, constraints of the kind

dΩ(x, y)2 ≥ ε⇔ 〈Ω, (x− y)(x− y)T 〉 ≥ ε

while for three points x, y, z,

dΩ(x, z) ≤ dΩ(x, y)⇔ 〈Ω, (x− y)(x− y)T − (x− z)(x− z)T 〉 ≥ 0

KAIST ML Tutorial - Jan. 15 2013 53

In practice

Inputs: { dΩ(xi, xj), xi, xj ∈ T}

• squared distance (not the distance itself) is linear w.r.t. Ω

dΩ(x, x′)2 = 〈Ω, (x− x′)(x− x′)T 〉.

• for two points x, y, constraints of the kind

dΩ(x, y)2 ≥ ε⇔ 〈Ω, (x− y)(x− y)T 〉 ≥ ε

while for three points x, y, z,

dΩ(x, z) ≤ dΩ(x, y)⇔ 〈Ω, (x− y)(x− y)T − (x− z)(x− z)T 〉 ≥ 0

• Falls into a SDP setting... as long as squared distances are always considered...

• Some implementations proposed in the literature use dedicated solvers.

KAIST ML Tutorial - Jan. 15 2013 54

Examples

KAIST ML Tutorial - Jan. 15 2013 55

Metric Learning (Xing,Ng,Jordan,Russel 2003)

• Elementary idea:

◦ pull all pairs of similar points together (S),
◦ push all pairs of dissimilar points apart (D)

max
Ω�0

∑

(xi,xj)∈S

dΩ(xi, xj)
2

such that
∑

(xi,xj)∈D

dΩ(xi, xj) ≥ 1

• dΩ is concave, so the constraint is convex

• The objective is linear in Ω.

• If use dΩ(·, ·)2 in the constraint, problem is degenerate.

KAIST ML Tutorial - Jan. 15 2013 56

Pseudo-Metric Online Learning Algorithm (POLA, 2004)

• Considers and online setting where pairs xt, x
′
t that are similar (yt = 1) or

dissimilar (yt = −1) are received sequentially at time t.

• A new Ω is selected at each iteration t depending on previous observations.

• Objective: minimize, up to T ,

L =
T
∑

t=1

lt(Ωt, bt)

where
lt(Ω, b)

def
= max

(

0, yt(d
Ω(xt, x

′
t)

2 − b) + 1
)

.

• To do so, use a simple updating step of Ωt:

◦ Let Ωt ← Ωt−1 − ytαt(xt − x′t)(xt − x′t)
T

◦ Project on cone of positive definite matrices by thresholding

KAIST ML Tutorial - Jan. 15 2013 57

Large Margin Nearest Neighbor (LMNN, 2006)

• Original idea

• LMNN solves the following SDP:

min
Ω

(1− µ)
∑

i,j i

(xi − xj)
TΩ(xi − xj) + µ

∑

i,j i,l

(1− yil)ξijl

such that(xi − xj)
TΩ(xi − xj)− (xi − xl)

TΩ(xi − xl) ≥ 1− ξijl

ξijl ≥ 0

KAIST ML Tutorial - Jan. 15 2013 58

Information Theoric Metric Learning (ITML, 2007)

• Suppose we have a prior candidate for Ω (e.g.Σ̂−1)

• Call this prior candidate Ω0.

• ITML proposes to find an Ω that is not too far from Ω0 while still splitting
similar and dissimilar points apart:

min
Ω

L(Ω,Ω0)

such that for (xi, xj) ∈ S, dΩ(xi, xj)2 ≤ u

such that for (xi, xj) ∈ D, dΩ(xi, xj) ≥ l

where L(A,B)
def
= tr(AB−1)− log det(AB−1) is a matrix-divergence

KAIST ML Tutorial - Jan. 15 2013 59

Illustration

KAIST ML Tutorial - Jan. 15 2013 60

Kernels

KAIST ML Tutorial - Jan. 15 2013 61

While Distance Based Algorithms...

x1

x4
x3

x5

x2

X ,d

xnew

... rely exclusively on all distances {d(xnew,xi), i = 1, · · · , 5}

KAIST ML Tutorial - Jan. 15 2013 62

Kernel Based Algorithms...

x1

x4
x3

x5

x2

X ,k

xnew

... rely exclusively on dot-products k(xnew,xi), i = 1, · · · , 5

KAIST ML Tutorial - Jan. 15 2013 63

Positive Definite Kernels

A bivariate function defined on a set X

k : X × X → R+

(x, y) 7→ k(x, y)

is a positive definite kernel if ∀ x, y ∈ X ,

• k(x, y) = k(y, x),→ symmetry

• and ∀n ∈ N, {x1, · · · , xn} ∈ Xn, c ∈ R
n,

n
∑

i=1

ci cj k(xi, xj) ≥ 0,→ positive definiteness

equivalently K =













k(x1, x1) · · · k(x1, xi) · · · k(x1, xn)
...

k(xi, x1) · · · k(xi, xi) · · · k(x2, xn)
...

k(xn, x1) · · · k(xn, xi) · · · k(xn, xn)













� 0

is positive semidefinite (has a nonnegative spectrum).

KAIST ML Tutorial - Jan. 15 2013 64

In the context of these lectures...

• A kernel k is a function

k : X × X 7−→ R

(x, y) −→ k(x, y)

• which compares two objects of a space X , e.g....

◦ strings, texts and sequences,

◦ images, audio and video feeds,

◦ graphs, interaction networks and 3D structures

• whatever actually... time-series of graphs of images? graphs of texts?...

KAIST ML Tutorial - Jan. 15 2013 65

What can we do with a kernel?

KAIST ML Tutorial - Jan. 15 2013 66

The setting

• Pretty simple setting: a set of objects x1, · · · , xn of X

• Sometimes additional information on these objects

◦ labels yi ∈ {−1, 1} or {1, · · · ,#(classes)},
◦ scalar values yi ∈ R,

◦ associated object yi ∈ Y

• A kernel k : X × X 7→ R.

KAIST ML Tutorial - Jan. 15 2013 67

A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

• The functional perspective: represent points as functions.

• Nonlinearity : linear combination of kernel evaluations.

• Summary of a sample through its kernel matrix.

KAIST ML Tutorial - Jan. 15 2013 68

Represent any point in X as a function

For every x, the map
x −→ k(x, ·)

associates to x a function k(x, ·) from X to R.

• Suppose we have a kernel k on bird images

• Suppose for instance

k (,) = .32

KAIST ML Tutorial - Jan. 15 2013 69

Represent any point in X as a function

• We examine one image in particular:

• With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R2 for simplicity.

schematic plot of k (, ·) .

KAIST ML Tutorial - Jan. 15 2013 70

Represent any point in X as a function

• If the bird example was confusing...

• k
(

[xy] ,
[

x′

y′

])

=
(

[x y]
[

x′

y′

]

+ .3
)2

• From a point in R
2 to a function defined over R2.

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

→
−5

0

5−6 −4 −2 0 2 4 6

0

100

200

300

400

500

x

y

((2 x+1.5 y) + .3)2

• We assume implicitly that the functional representation will be more useful
than the original representation.

KAIST ML Tutorial - Jan. 15 2013 71

Decision functions as linear combination of kernel evaluations

• Linear decisions functions are a major tool in statistics, that is functions

f(x) = βTx+ β0.

• Implicitly, a point x is processed depending on its characteristics xi,

f(x) =
d
∑

i=1

βixi + β0.

the free parameters are scalars β0, β1, · · · , βd.

• Kernel methods yield candidate decision functions

f(x) =
n
∑

j=1

αjk(xj, x) +α0.

the free parameters are scalars α0, α1, · · · , αn.

KAIST ML Tutorial - Jan. 15 2013 72

Decision functions as linear combination of kernel

evaluations

• linear decision surface / linear expansion of kernel surfaces (here kG(xi, ·))

−6 −4 −2 0 2 4 6−5

0

5

−3

−2

−1

0

1

2

3

4

x
y

−20

−10

0

10

20 −20
−10

0
10

20

−0.1

0

0.1

0.2

0.3

0.4

• Kernel methods are considered non-linear tools.

• Yet not completely “nonlinear” → only one-layer of nonlinearity.

kernel methods use the data as a functional base to define decision functions

KAIST ML Tutorial - Jan. 15 2013 73

Decision functions as linear combination of kernel evaluations

with a kernel machine

f(x) =
∑N

i=1 αi k (xi,x)

kernel definition

weights α estimated

database {xi, i = 1, . . . , N}

• f is any predictive function of interest of a new point x.

• Weights α are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set

KAIST ML Tutorial - Jan. 15 2013 74

The Gram matrix perspective

• Imagine a little task: you have read 100 novels so far.

• You would like to know whether you will enjoy reading a new novel.

• A few options:

◦ read the book...

◦ have friends read it for you, read reviews.

◦ try to guess, based on the novels you read, if you will like it

KAIST ML Tutorial - Jan. 15 2013 75

The Gram matrix perspective

Two distinct approaches

• Define what features can characterize a book.

◦ Map each book in the library onto vectors

−→ x =









x1

x2
...
xd









typically the xi’s can describe...
⊲ # pages, language, year 1st published, country,

⊲ coordinates of the main action, keyword counts,

⊲ author’s prizes, popularity, booksellers ranking

• Challenge: find a decision function using 100 ratings and features.

KAIST ML Tutorial - Jan. 15 2013 76

The Gram matrix perspective

• Define what makes two novels similar,

◦ Define a kernel k which quantifies novel similarities.

◦ Map the library onto a Gram matrix

−→ K =









k(b1, b1) k(b1, b2) · · · k(b1, b100)
k(b2, b1) k(b2, b2) · · · k(b2, b100)

...
k(bn, b1) k(bn, b2) · · · k(b100, b100)









• Challenge: find a decision function that takes this 100×100 matrix as an input.

KAIST ML Tutorial - Jan. 15 2013 77

The Gram matrix perspective

Given a new novel,

• with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have I found in the past that were
good indicators of my taste?

• with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did I find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.

KAIST ML Tutorial - Jan. 15 2013 78

The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset x3

x4

x5
x2

x1

convex optimization

K5×5, kernel matrix

k

α

and Convex optimization (thanks to psdness of K, more later) to output the α’s.

KAIST ML Tutorial - Jan. 15 2013 79

Example of a Kernel Machine:

Classification with the Support Vector

Machine

KAIST ML Tutorial - Jan. 15 2013 80

Data

• Data : vectors x1, x2, x3, · · · , xN .

• Ideally, to infer a “yes/no” rule, we need the correct answer for each vector.

• We consider thus a set of pairs of (vector,bit)

“training set” =























xi =









xi
1

xi
2
...
xi
d









∈ R
d, yi ∈ {0, 1}









i=1..N















• For illustration purposes only we will consider vectors in the plane, d = 2.

• Points are easier to represent in 2 dimensions than in 20.000...

• The ideas for d≫ 3 are exactly the same.

KAIST ML Tutorial - Jan. 15 2013 81

Binary Classification Separation Surfaces for Vectors

What is a classification rule?

KAIST ML Tutorial - Jan. 15 2013 82

Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of Rd into two sets

KAIST ML Tutorial - Jan. 15 2013 83

Binary Classification Separation Surfaces for Vectors

This partition is usually interpreted as the level set of function on R
d

KAIST ML Tutorial - Jan. 15 2013 84

Binary Classification Separation Surfaces for Vectors

Typically, {x ∈ R
d|f(x) > 0} and {x ∈ R

d|f(x) ≤ 0}

KAIST ML Tutorial - Jan. 15 2013 85

Classification Separation Surfaces for Vectors

Can be defined by a single surface, e.g. a curved line

KAIST ML Tutorial - Jan. 15 2013 86

Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halfspaces.

KAIST ML Tutorial - Jan. 15 2013 87

Linear Classifiers

• Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.

• A hyperplane Hc,b is a set in R
d defined by

◦ a normal vector c ∈ R
d

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across Rd

c

Hc,0

Hc,b0

KAIST ML Tutorial - Jan. 15 2013 88

Linear Classifiers

• Exactly like lines in the plane, hypersurfaces divide R
d into two halfspaces,

{

x ∈ R
d | cTx< b

}

∪
{

x ∈ R
d | cTx≥ b

}

= R
d

• Linear classifiers attribute the “yes” and “no” answers given arbitrary c and b.

NO

YES

Hc,b

c

• Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c⋆, b⋆) given a training sample?

KAIST ML Tutorial - Jan. 15 2013 89

Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. Depends on the meaning of “best” ?:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• Support Vector Machine, the result of a convex program

• etc.

KAIST ML Tutorial - Jan. 15 2013 90

Classification Separation Surfaces for Vectors

Given two sets of points...

KAIST ML Tutorial - Jan. 15 2013 91

Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly

KAIST ML Tutorial - Jan. 15 2013 92

Classification Separation Surfaces for Vectors

Each choice might look equivalently good on the training set,
but it will have obvious impact on new points

KAIST ML Tutorial - Jan. 15 2013 93

Classification Separation Surfaces for Vectors

KAIST ML Tutorial - Jan. 15 2013 94

Linear classifier, some degrees of freedom

KAIST ML Tutorial - Jan. 15 2013 95

Linear classifier, some degrees of freedom

KAIST ML Tutorial - Jan. 15 2013 96

Linear classifier, some degrees of freedom

Specially close to the border of the classifier

KAIST ML Tutorial - Jan. 15 2013 97

Linear classifier, some degrees of freedom

KAIST ML Tutorial - Jan. 15 2013 98

Linear classifier, some degrees of freedom

For each different technique, different results, different performance.

KAIST ML Tutorial - Jan. 15 2013 99

A criterion to select a linear classifier: the margin ?

KAIST ML Tutorial - Jan. 15 2013 100

A criterion to select a linear classifier: the margin ?

KAIST ML Tutorial - Jan. 15 2013 101

A criterion to select a linear classifier: the margin ?

KAIST ML Tutorial - Jan. 15 2013 102

A criterion to select a linear classifier: the margin ?

KAIST ML Tutorial - Jan. 15 2013 103

A criterion to select a linear classifier: the margin ?

KAIST ML Tutorial - Jan. 15 2013 104

Largest Margin Linear Classifier ?

KAIST ML Tutorial - Jan. 15 2013 105

Support Vectors with Large Margin

KAIST ML Tutorial - Jan. 15 2013 106

In equations

• The training set is a finite set of n data/class pairs:

T = {(x1, y1), . . . , (xN , yN)} ,

where xi ∈ R
d and yi ∈ {−1, 1}.

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .

KAIST ML Tutorial - Jan. 15 2013 107

How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx+ b consider the interstice defined by the
hyperplanes

• f(x) = wTx+ b = +1

• f(x) = wTx+ b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

KAIST ML Tutorial - Jan. 15 2013 108

The margin is 2/||w||

• Indeed, the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ = 2||x2 − x1|| =
2

||w||.

where γ is the margin.

KAIST ML Tutorial - Jan. 15 2013 109

All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(

wTxi + b
)

≥ 1

KAIST ML Tutorial - Jan. 15 2013 110

Finding the optimal hyperplane

• Finding the optimal hyperplane is equivalent to finding (w, b) which minimize:

‖w‖2

under the constraints:

∀i = 1, . . . , n, yi
(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective

KAIST ML Tutorial - Jan. 15 2013 111

Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi
(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi

(

yi
(

wTxi + b
)

− 1
)

.

KAIST ML Tutorial - Jan. 15 2013 112

The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi

(

yi
(

wTxi + b
)

− 1
)

}

the saddle point conditions give us that at the minimum in w and b

w =
n
∑

i=1

αiyixi, (derivating w.r.t w) (∗)

0 =
n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.

• Strong duality holds : primal and dual problems have the same optimum.

• KKT gives us αi(yi
(

wTxi + b
)

− 1) = 0,
...hence, either αi = 0 or yi

(

wTxi + b
)

= 1.

• αi 6= 0 only for points on the support hyperplanes {(x, y)| yi(wTxi + b) = 1}.

KAIST ML Tutorial - Jan. 15 2013 113

Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1αi − 1
2

∑n
i,j=1αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α∗ can be computed using optimization software
(e.g. built-in matlab function)

KAIST ML Tutorial - Jan. 15 2013 114

Recovering the optimal hyperplane

• With α∗, we recover (wT , b∗) corresponding to the optimal hyperplane.

• wT is given by wT =
∑n

i=1 yiαix
T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1
2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx+ b∗

=

(

n
∑

i=1

yiαix
T
i

)

x+ b∗.

• Here the dual solution gives us directly the primal solution.

KAIST ML Tutorial - Jan. 15 2013 115

Interpretation: support vectors

α>0

α=0

KAIST ML Tutorial - Jan. 15 2013 116

Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable

KAIST ML Tutorial - Jan. 15 2013 117

Another interpretation: Convex Hulls

Linearly separable = convex hulls do not intersect

KAIST ML Tutorial - Jan. 15 2013 118

Another interpretation: Convex Hulls

Find two closest points, one in each convex hull

KAIST ML Tutorial - Jan. 15 2013 119

Another interpretation: Convex Hulls

The SVM = bisection of that segment

KAIST ML Tutorial - Jan. 15 2013 120

Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie

KAIST ML Tutorial - Jan. 15 2013 121

The non-linearly separable case

(when convex hulls intersect)

KAIST ML Tutorial - Jan. 15 2013 122

What happens when the data is not linearly separable?

KAIST ML Tutorial - Jan. 15 2013 123

What happens when the data is not linearly separable?

KAIST ML Tutorial - Jan. 15 2013 124

What happens when the data is not linearly separable?

KAIST ML Tutorial - Jan. 15 2013 125

What happens when the data is not linearly separable?

KAIST ML Tutorial - Jan. 15 2013 126

Soft-margin SVM ?

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{

1

margin(f)
+ C × errors(f)

}

• C is a parameter

KAIST ML Tutorial - Jan. 15 2013 127

Soft-margin SVM formulation ?

• The margin of a labeled point (x, y) is

margin(x, y) = y
(

wTx+ b
)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1−margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b
{‖w‖2 + C

n
∑

i=1

max{0, 1− yi
(

wTxi + b
)

}

• c(u, y) = max{0, 1− yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.

KAIST ML Tutorial - Jan. 15 2013 128

Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b
{‖w‖2 + C

n
∑

i=1

max{0, 1− yi
(

wTxi + b
)

}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1 ξi
such that yi

(

wTxi + b
)

≥ 1− ξi

• In that case the dual function

g(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1αiyi = 0.

KAIST ML Tutorial - Jan. 15 2013 129

Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=

KAIST ML Tutorial - Jan. 15 2013 130

What about the convex hull analogy?

• Remember the separable case

• Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.

KAIST ML Tutorial - Jan. 15 2013 131

What about the convex hull analogy?

Definition 1. Given a set of n points A, and 0 ≤ C ≤ 1, the set of finite
combinations

n
∑

i=1

λixi, 1 ≤ λi ≤ C,
n
∑

i=1

λi = 1,

is the (C) reduced convex hull of A

• Using C = 1/2, the reduced convex hulls of A and B,

• Soft-SVM with C = closest two points of C-reduced convex hulls.

KAIST ML Tutorial - Jan. 15 2013 132

Kernels

KAIST ML Tutorial - Jan. 15 2013 133

Kernel trick for SVM’s

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1

x2

])

=

[

x2
1

x2
2

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′

1)
2 + (x2)

2(x′
2)

2.

KAIST ML Tutorial - Jan. 15 2013 134

Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉+ b∗

=
n
∑

i=1

yiαik(xi, x)+ b∗.
(1)

KAIST ML Tutorial - Jan. 15 2013 135

The Kernel Trick ?

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1
2α

T (K ⊙ yyT)α
such that 0 ≤ αi ≤ C, for i = 1, . . . , n

∑n
i=1αiyi = 0.

• K’s positive definite ⇔ problem has an unique optimum

• the decision function is f(·) =∑n
i=1αi k(xi, ·) + b.

KAIST ML Tutorial - Jan. 15 2013 136

Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√
2x1x2, x

2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2

KAIST ML Tutorial - Jan. 15 2013 137

Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models

KAIST ML Tutorial - Jan. 15 2013 138

Designing Kernels

• As with distances, one can design kernels on any kind of object

◦ time-series, strings, graphs, trees

◦ images, video, audio, text

◦ combination of the objects above!

• very large literature! too vast to discuss today.

KAIST ML Tutorial - Jan. 15 2013 139

Positive Definite Kernels & Combinatorial

Distances for Structures

KAIST ML Tutorial - Jan. 15 2013 140

Structured Objects

• Objects in a countable set

◦ variable length strings, trees, graphs, permutations

• Constrained vectors

◦ Positive vectors, histograms

• Vectors of different sizes

◦ variable length time series

KAIST ML Tutorial - Jan. 15 2013 141

Structured Objects

• Objects in a countable set

◦ variable length strings, trees, graphs, permutations

• Constrained vectors

◦ Positive vectors, histograms

• Vectors of different sizes

◦ variable length time series

How can we define a kernel or a distance on such sets?

in most cases, applying standard distances on R
n or even N

n is meaningless

KAIST ML Tutorial - Jan. 15 2013 142

Back to fundamentals

• Distances are optimal by nature, and quantify shortest length paths.

◦ Graph-metrics are defined that way

1

2

5

4

3

d12

d45

d34d14

d23

◦ Triangle inequalities are defined precisely to enforce this optimality

d(x, y) ≤ d(x, z) + d(z, y)

KAIST ML Tutorial - Jan. 15 2013 143

Back to fundamentals

• Distances are optimal by nature, and quantify shortest length paths.

◦ Graph-metrics are defined that way

1

2

5

4

3

d12

d45

d34d14

d23

◦ Triangle inequalities are defined precisely to enforce this optimality

d(x, y) ≤ d(x, z) + d(z, y)

→ many distances on structured objects rely on optimization

KAIST ML Tutorial - Jan. 15 2013 144

Back to fundamentals

• p.d. kernels are additive by nature

◦ k is positive definite ⇔ ∃ϕ : X → H such that

k(x, y) = 〈ϕ(x), ϕ(y)〉H.

• X ∈ S+
n ⇔ ∃L ∈ R

n×n|X = LTL.

KAIST ML Tutorial - Jan. 15 2013 145

Back to fundamentals

• p.d. kernels are additive by nature

◦ k is positive definite ⇔ ∃ϕ : X → H such that

k(x, y) = 〈ϕ(x), ϕ(y)〉H.

• X ∈ S+
n ⇔ ∃L ∈ R

n×n|X = LTL.

→ many kernels on structured objects
rely on defining explicitly (possibly infinite) feature vectors

very large literature on this subject which we will not address here.

KAIST ML Tutorial - Jan. 15 2013 146

Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

◦ Consider two inputs x, y,

◦ Define a countable set of mappings from x to y, T (x, y)

◦ Define a cost c(τ) for each element τ of T (x, y).

◦ Define a distance between x, y as

d(x, y) = min
τ∈T (x,y)

c(τ)

KAIST ML Tutorial - Jan. 15 2013 147

Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

◦ Consider two inputs x, y,

◦ Define a countable set of mappings from x to y, T (x, y)

◦ Define a cost c(τ) for each element τ of T (x, y).

◦ Define a distance between x, y as

d(x, y) = min
τ∈T (x,y)

c(τ)

• Symmetry, definiteness and triangle inequalities depend on c and T .

KAIST ML Tutorial - Jan. 15 2013 148

Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

◦ Consider two inputs x, y,

◦ Define a countable set of mappings from x to y, T (x, y)

◦ Define a cost c(τ) for each element τ of T (x, y).

◦ Define a distance between x, y as

d(x, y) = min
τ∈T (x,y)

c(τ)

• Symmetry, definiteness and triangle inequalities depend on c and T .

• In many cases, T is endowed with a dot product, c(τ) = 〈τ, θ〉 for some θ.

KAIST ML Tutorial - Jan. 15 2013 149

Combinatorial Distances are not Negative Definite

d(x, y) = min
τ∈T (x,y)

c(τ)

• In most cases such distances are not negative definite

p.d.Kn.d.KD

• Can we use them to define kernels?

p.d.Kn.d.KD

• Yes so far, using always the same technique.

KAIST ML Tutorial - Jan. 15 2013 150

An alternative definition of minimality

for a family of numbers an, n ∈ N,

soft-minan = − log
∑

n

e−an

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
Min: 0.19 Soft−min: −1.4369

1 2 3 4 5 6 7 8 9 10
0

1

2

3
Min: 0.206 Soft−min: −1.5755

KAIST ML Tutorial - Jan. 15 2013 151

Soft-min of costs - Generating Functions

d(x, y) = min
τ∈T (x,y)

c(τ)

e−d is not positive definite in the general case

KAIST ML Tutorial - Jan. 15 2013 152

Soft-min of costs - Generating Functions

d(x, y) = min
τ∈T (x,y)

c(τ)

e−d is not positive definite in the general case

δ(x, y) = soft-min
τ∈T (x,y)

c(τ)

e−δ has been proved to be positive definite in all known cases

KAIST ML Tutorial - Jan. 15 2013 153

Soft-min of costs - Generating Functions

d(x, y) = min
τ∈T (x,y)

c(τ)

e−d is not positive definite in the general case

δ(x, y) = soft-min
τ∈T (x,y)

c(τ)

e−δ has been proved to be positive definite in all known cases

e−δ(x,y) =
∑

τ∈T (x,y)

e−〈τ,θ〉 = GT (x,y)(θ)

GT (x,y) is the generating function of the set of all mappings between x and y.

KAIST ML Tutorial - Jan. 15 2013 154

Example: Optimal assignment distance between two sets

• Input: x = {x1, · · · , xn}, y = {y1, · · · , yn} ∈ Xn

x1

x4

x3

x2

y1

y4

y3

y2

KAIST ML Tutorial - Jan. 15 2013 155

Example: Optimal assignment distance between two sets

• Input: x = {x1, · · · , xn}, y = {y1, · · · , yn} ∈ Xn

x1

x4

x3

x2

y1

y4

y3

y2

d12

d34

d24

d13

• cost parameter: distance d on X . mapping variable: permutation σ in Sn

• cost:
∑n

i=1 d(xi, yσ(i).

KAIST ML Tutorial - Jan. 15 2013 156

Example: Optimal assignment distance between two sets

• Input: x = {x1, · · · , xn}, y = {y1, · · · , yn} ∈ Xn

x1

x4

x3

x2

y1

y4

y3

y2

d12

d34

d24

d13

• cost parameter: distance d on X . mapping variable: permutation σ in Sn.

• cost:
∑n

i=1 d(xi, yσ(i)) = 〈Pσ,D〉 where D = [d(xi, yj)]

dAssig.(x, y) = minσ∈Sn

∑n
i=1 d(xi, yσ(i)) = minσ∈Sn〈Pσ,D〉

KAIST ML Tutorial - Jan. 15 2013 157

Example: Optimal assignment distance between two sets

dAssig.(x, y) = minσ∈Sn

∑n
i=1 d(xi, yσ(i)) = minσ∈Sn〈Pσ,D〉

define k = e−d. If k is positive definite on X then

kPerm(x, y) =
∑

σ∈Sn
e−〈Pσ,D〉 = Permanent[k(xi, yj)]

is positive definite (C. 2007). e−dAssig. is not (Frohlich et al. 2005, Vert 2008).

KAIST ML Tutorial - Jan. 15 2013 158

Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

KAIST ML Tutorial - Jan. 15 2013 159

Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

• mapping variable: alignment π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing path)

D

N

I

ENOD

O

G

KAIST ML Tutorial - Jan. 15 2013 160

Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

• mapping variable: alignment π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing path)

D

N

I

ENOD

O

G

• cost parameter: distance d on X + gap function g : N→ R.

• c(π) =
∑|π|

i=1 d(xπ1(i), yπ2(i))+
∑|π|−1

i=1 g(π1(i+1)−π1(i))+g(π2(i+1)−π2(i))

KAIST ML Tutorial - Jan. 15 2013 161

Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

• mapping variable: alignment π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing path)

D

N

I

ENOD

O

G

• cost parameter: distance d on X + gap function g : N→ R.

• c(π) =
∑|π|

i=1 d(xπ1(i), yπ2(i))+
∑|π|−1

i=1 g(π1(i+1)−π1(i))+g(π2(i+1)−π2(i))

dalign(x, y) = minπ∈Alignments c(π)

KAIST ML Tutorial - Jan. 15 2013 162

Example: Optimal alignment between two strings

dalign(x, y) = minπ∈Alignments c(π)

define k = e−d. If k is positive definite on X then

kLA(x, y) =
∑

π∈Alignments e
−c(π)

is positive definite (Saigo et al. 2003).

KAIST ML Tutorial - Jan. 15 2013 163

Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

X

x1

y1

y3
y7

x3

x2

x5

y2

y5

y6

x4

y4

KAIST ML Tutorial - Jan. 15 2013 164

Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

• mapping variable: π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing contiguous path)

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

KAIST ML Tutorial - Jan. 15 2013 165

Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

• mapping variable: π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing contiguous path)

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

• cost parameter: distance d on X . cost: c(π) =∑|π|
i=1 d(xπ1(i), yπ2(i))

KAIST ML Tutorial - Jan. 15 2013 166

Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

• mapping variable: π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing contiguous path)

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

• cost parameter: distance d on X . cost: c(π) =∑|π|
i=1 d(xπ1(i), yπ2(i))

dDTW(x, y) = minπ∈Alignments c(π)

KAIST ML Tutorial - Jan. 15 2013 167

Example: Optimal alignment between two strings

dDTW(x, y) = minπ∈Alignments c(π)

define k = e−d. If k is positive definite and geometrically divisible on X then

kGA(x, y) =
∑

π∈Alignments e
−c(π)

is p.d. (C. et al. 2007, C. 2011). e−dDTW is not (Shimodaira et al. 2001)

KAIST ML Tutorial - Jan. 15 2013 168

Example: Edit-distance between two trees

• Input: two labeled trees x, y.

• mapping variable: sequence of substitutions/deletions/insertions of vertices

• cost parameter: γ distance between labels and cost for deletion/insertion

dTreeEdit(x, y) = minσ∈EditScripts(x,y)

∑

γ(σi)

KAIST ML Tutorial - Jan. 15 2013 169

Example: Edit-distance between two trees

• Input: two labeled trees x, y.

• mapping variable: sequence of substitutions/deletions/insertions of vertices

• cost parameter: γ distance between labels and cost for deletion/insertion

dTreeEdit(x, y) = minσ∈EditScripts(x,y)

∑

γ(σi)

• if e−γ p.d. then p.definiteness of the generating function was proved by Shin &
Kuboyama 2008; Shin, C., Kuboyama 2011.

KAIST ML Tutorial - Jan. 15 2013 170

Example: Transportation distance between discrete histograms

Monge-Kantorovich, Wasserstein, Earth Mover’s, Mallow’s etc...

• Input: two integer histograms x, y ∈ N
d such that

∑d
i=1 xi =

∑d
i=1 yi = N

• mapping: transportation matrices U(r, c) = {X ∈ N
d×d|X1d = x, XT1d = y}

• cost parameter: M distance matrix inMd.

dW (x, y) = minX∈U(r,c)〈X,M〉

KAIST ML Tutorial - Jan. 15 2013 171

Example: Transportation distance between discrete histograms

dW (x, y) = minX∈U(r,c)〈X,M〉

define kij = e−mij . If [kij] is positive definite on X then

kM(x, y) =
∑

X∈U(r,c) e
−〈X,M〉

is positive definite (C., submitted).

KAIST ML Tutorial - Jan. 15 2013 172

Example: Transportation distance between discrete histograms

R
d×d

N
d×d

M

dM (r, c) = 〈X⋆,M〉 = minX∈U(r,c)〈X,M〉 U(r, c)

X⋆

V (r, c ;M) =
∑

X∈(r,c) e
−〈X,M〉

{X ∈ R
d×d|〈X,M〉 = 〈X⋆,M〉}

{X ∈ R
d×d|〈X,M〉 = 〈X◦,M〉}

X◦

〈X◦,M〉 = maxX∈U(r,c)〈X,M〉

(r, c)

KAIST ML Tutorial - Jan. 15 2013 173

To wrap up

p.d.Kn.d.KD

d(x, y) = min
τ∈T (x,y)

c(τ), δ(x, y) = soft-min
τ∈T (x,y)

c(τ)

e−δ(x,y) =
∑

τ∈T (x,y) e
−〈τ,θ〉 = GT (x,y)(θ) is positive definite in many (all) cases.

KAIST ML Tutorial - Jan. 15 2013 174

