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Outline of this module

• Start with convexity reminders (again...)

• Continue our review of optimization with Duality

• Introduce general convex programs

• Study practical implementations:

◦ Gradient descent, Newton Methods
◦ Equality constrained Newton Methods
◦ Barrier methods.

• Many slides here have been given to me by Stephen Boyd (Stanford),

• Check his book (free on the web!) with Lieven Vandenberghe and the excellent
videos of his course (youtube) if you want to dig deeper on this topic.
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Reminders: Convex set

line segment between x1 and x2: all points

x = λx1 + (1 − λ)x2

with 0 ≤ λ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ λ ≤ 1 =⇒ λx1 + (1 − λ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = λ1x1 + λ2x2 + · · · + λkxk

with λ1 + · · · + λk = 1, λi ≥ 0

convex hull 〈S〉: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = λ1x1 + λ2x2

with λ1 ≥ 0, λ2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x− xc)
TP−1(x− xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

other representation: {xc +Au | ‖u‖2 ≤ 1} with A square and nonsingular

VNU June 12-17 7



Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖ + ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}
Euclidean norm cone is called second-
order cone

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

• Sn is set of symmetric n× n matrices

• Sn
+ = {X ∈ Sn | X � 0}: positive semidefinite n× n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

Sn
+ is a convex cone

• Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite n× n matrices

example:

[
x y
y z

]
∈ S2

+

xy

z

0

0.5

1

−1

0

1
0

0.5

1
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Duality
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Duality

• Duality theory:

◦ Keep this in mind: only a long list of simple inequalities. . . .
◦ In the end: very powerful results at low technical/numerical cost.
◦ A few important, intuitive theorems.

• In a LP context:

◦ Dual problem provides a different interpretation on the same problem.
◦ Essentially assigns cost (“displeasure” measure) to constraints.
◦ Provides alternative algorithms (dual-simplex).

• In a more general context:

◦ Very powerful tool to give approximate solutions to intractable problems.
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Duality : the general case
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Optimization problem

• Consider the following mathematical program:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ D ⊂ Rn with optimal value p⋆.

• No particular assumptions on D and the functions f and h (nothing about
convexity, linearity, continuity, etc.)

• Very generic (includes linear programming and many other problems)
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Lagrangian

We form the Lagrangian of this problem:

L(x,λ, µ) = f0(x) +
m∑

i=1

λifi(x) +

p∑

i=1

µihi(x).

Variables λ ∈ Rm and µ ∈ Rp are called Lagrange multipliers.

• The Lagrangian is a penalized version of the original objective

• The Lagrange multipliers λi, µi control the weight of the penalties.

• The Lagrangian is a smoothed version of the hard problem, we have turned
x ∈ C into penalties that take into account the constraints that define C.
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Lagrange dual function

• We originally have

L(x,λ, µ) = f0(x) +
m∑

i=1

λifi(x) +

p∑

i=1

µihi(x)

• The penalized problem is here:

g(λ, µ) = infx∈D L(x,λ, µ)
= infx∈D f0(x) +

∑m
i=1 λifi(x) +

∑p
i=1 µihi(x)

• The function g(λ, µ) is called the Lagrange dual function.

◦ Easier to solve than the original one (the constraints are gone)
◦ Can often be computed explicitly (more later)
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Lower bound

• The function g(λ, µ) produces a lower bound on p⋆.

• Lower bound property: If λ ≥ 0, then g(λ, µ) ≤ p⋆

• Why?

◦ If x̃ is feasible,
⊲ fi(x̃) ≤ 0 and thus λifi(x̃) ≤ 0
⊲ hi(x̃) = 0, and thus µihi(x̃) = 0

◦ thus by construction of L:

g(λ, µ) = inf
x∈D

L(x, λ, µ) ≤ L(x̃, λ, µ) ≤ f0(x̃)

◦ This is true for any feasible x̃, so it must be true for the optimal one, which
means g(λ, µ) ≤ f0(x

⋆) = p⋆.
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Lower bound

• We have a systematic way of producing lower bounds on the optimal value
p⋆ of the original problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

by computing the value for a given (λ, µ) couple where λ ≥ 0.

• We can look for the best possible one. . .
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Dual problem

• We can define the Lagrange dual problem:

maximize g(λ, µ)
subject to λ ≥ 0

in the variables λ ∈ Rm and µ ∈ Rp.

• Finds the best, that is highest, possible lower bound g(λ, µ) on the optimal
value p⋆ of the original (now called primal) problem.

• We call its optimal value d⋆
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Dual problem

• For each given x, the function

L(x, λ, µ) = f0(x) +
m∑

i=1

λifi(x) +

p∑

i=1

µihi(x)

is linear in the variables λ and µ.

• This means that the function

g(λ, µ) = inf
x∈D

L(x, λ, µ)

is a minimum of linear functions of (λ, µ), so it must be concave in (λ, µ)

• This means that the dual problem is always a concave maximization problem,
whatever f, g, h’s properties are.
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Weak duality

We have shown the following property called weak duality:

d⋆ ≤ p⋆

i.e. the optimal value of the dual is always less than the optimal value of the
primal problem.

• We haven’t made any further assumptions on the problem

• Weak duality must always hold

• Produces lower bounds on the problem at low cost

What happens when d⋆ = p⋆ ?. . .
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Strong duality

When d⋆ = p⋆ we have strong duality.

• Because d⋆ is a lower bound on the optimal value p⋆, if both are equal for
some (x, λ, µ), the current point must be optimal

• For most convex problems, we have strong duality

• The difference p⋆ − d⋆ is called the duality gap and is a measure of how
optimal the current solution (x, λ, µ).
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Slater’s conditions

Example of sufficient conditions for strong duality:

• Slater’s conditions. Consider the following problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b, i = 1, . . . , p

where all the fi(x) are convex and assume that:

there exists x ∈ D : fi(x) < 0, Ax = b, i = 1, . . . ,m

in other words there is a strictly feasible point, then strong duality holds.

• Many other versions exist. . .

• Often easy to check.

• Let’s see for linear programs.
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Duality: the simple example of linear

programming
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Duality: linear programming

• Take a linear program in standard form:

minimize cTx

subject to Ax = b

x ≥ 0 ( which is equivalent to − x ≤ 0)

• We can form the Lagrangian:

L(x, λ, µ) = cTx − λTx + µT (Ax − b)

• and the Lagrange dual function:

g(λ, µ) = infxL(x, λ, µ)

= infx cTx − λTx + µT (Ax − b)
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Duality: linear programming

• For linear programs, the Lagrange dual function can be computed explicitly:

g(λ, µ) = infx cTx − λTx + µT (Ax − b)

= infx(c− λ+ATµ)Tx− bTµ

• This is either −bTµ or −∞, so we finally get:

g(λ, µ) =

{
−bTµ if c− λ+ ATµ = 0
−∞ otherwise

• If g(λ, µ) = −∞ we say that (λ, µ) are outside the domain of the dual.
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Duality: linear programming

• With g(λ, µ) given by:

g(λ, µ) =

{
−bTµ if c− λ+ ATµ = 0
−∞ otherwise

• we can write the dual program as:

maximize g(λ, µ)
subject to λ ≥ 0

• which is again, writing the domain explicitly:

maximize −bTµ
subject to c− λ+ATµ = 0

λ ≥ 0
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Duality: linear programming

• After simplification:

{
c− λ+ATµ = 0
λ ≥ 0

⇐⇒ c+ATµ ≥ 0

• we conclude that the dual of the linear program:

minimize cTx

subject to Ax = b (primal)
x ≥ 0

• is given by:
maximize −bTµ
subject to −ATµ ≤ c (dual)

• equivalently:
maximize bTµ
subject to ATµ ≤ c
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Dual Linear Program

Up to now, what have we introduced?

• A vector of parameters µ ∈ Rm, one coordinate by constraint.

• For any µ and any feasible x of the primal = a lower bound on the primal.

• For some µ the lower bound is −∞, not useful.

• The dual problem computes the biggest lower bound.

• We discard values of µ which give −∞ lower bounds.

• This the way dual constraints are defined.

• The dual is another linear program in dimensions Rn×m, that is

◦ n constraints,
◦ m variables.
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From Primal to Dual for general LP’s

• Some notations: for A ∈ Rm×n we write

◦ aj for the n column vectors
◦ Ai for the m row vectors of A.

• Following a similar reasoning we can flip from primal to dual changing

◦ the constraints linear relationships A,
◦ the constraints constants b,
◦ the constraints directions (≤,≥,=)
◦ non-negativity conditions,
◦ the objective

minimize cTx maximize µTb

subject to AT
i x ≥ bi, i ∈M1 subject to µi ≥ 0 i ∈M1

AT
i x ≤ bi, i ∈M2 µi ≤ 0 i ∈M2

AT
i x = bi, i ∈M3 µi free i ∈M3

xj ≥ 0 j ∈ N1 µTaj ≤ cj j ∈ N1

xj ≤ 0 j ∈ N1 µTaj ≥ cj j ∈ N2

xj free j ∈ N1 µTaj = cj j ∈ N3

(1)

VNU June 12-17 30



Dual Linear Program

• In summary, for any kind of constraint,

primal minimize maximize dual

constraints
≥ bi ≥ 0

variables≤ bi ≤ 0
= bi free

variables
≥ 0 ≤ cj

constraints≤ 0 ≥ cj
free = cj

• For simple cases and in matrix form,

minimize cTx

subject to Ax = b

x ≥ 0
⇒ maximize bTµ

subject to ATµ ≤ c

minimize cTx

subject to Ax ≥ b
⇒

maximize bTµ
subject to ATµ = c

µ ≥ 0
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Dual Linear Program: Equivalence Theorems

Theorem 1. If we transform the dual problem into an equivalent minimization
problem and the form its dual, we obtain a problem that is equivalent to the
original problem

• The dual of the dual of a given primal LP is the primal LP itself.

• Linear programs are self-dual.

• Not true in the general case: dual of the dual is called the bi-dual.

• The tables before can be used in both directions indifferently.
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Dual Linear Program: Equivalence Theorems

Theorem 2. If we transform a LP (1) into another LP (2) through any of the
following operations:

• replace free variables with the difference of two nonnegative variables;

• replace inequality constraints by an equality constraint with a surplus/slack
variable;

• remove redundant (colinear) rows of the constraint matrix for standard
forms;

then the duals of (1) and (2) are equivalent, i.e. they are either both infeasible
or have the same optimal objective.
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Duality for LP’s : Weak Duality

We proved weak duality for general programs. Although LP’s are a particular
case the arguments are here explicit:

Theorem 3. If x is a feasible solution to a primal LP and µ is a feasible
solution to the dual problem then

µTb ≤ cTx

• Proof idea check what is called the complementary slackness variables
µi(A

T
i x− bi) and (cj − µTaj)xj and use the primal/dual relationships.
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Weak Duality Proof

Proof. • Let x ∈ Rn and µ ∈ Rm and define

ui = µi(A
T
i x − bi) i = 1, ..,m

vj = (cj − µTaj)xj j = 1, .., n

• Suppose x and µ are primal and dual feasible for an LP involving A, b and c.

• Check Equations 1. Whatever the constraints are,

◦ µi and (AT
i x− bi) have the same sign or their product is zero.

◦ The same goes for (cj − µTaj) and xj.

• Hence ui, vj ≥ 0.

• Furthermore
∑m

i ui = µT (Ax − b) and
∑n

j vj = (cT − µTA)x

• Hence 0 ≤∑m
i ui +

∑n
j vj = cTx − µTb
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Weak Duality

• Not a very strong result at first look.

• Specially since we already discussed strong duality...

• Yet weak duality provides us with the two simple yet important corollaries.

• In the following we assume that the primal is a minimization.

• As usual, results can be easily proved the other way round.
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Weak Duality Corollary 1

Corollary 1. • If the objective in the primal can be arbitrarily small then the
dual problem must be infeasible.

• If the objective in the primal can be arbitrarily big then the dual problem
must be infeasible.

Proof. • By weak duality, µTb ≤ cTx for any two feasible points x, µ.

• If the objective for feasible x can be set arbitrarily low, then a feasible µ
cannot exist.

• The same applies for a feasible x if the dual objective can be arbitrarily high.
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Weak Duality Corollary 2

Corollary 2. Let x⋆ and µ⋆ be two feasible solutions to the primal and dual
respectively. Suppose that µ⋆Tb = cTx⋆. Then x⋆ and µ⋆ are optimal
solutions for the primal and dual respectively.

Proof. For every feasible point of the primal y, cTx⋆ = µ⋆Tb ≤ cTy hence x⋆ is
optimal. Same thing for µ⋆.

• Let’s check whether strong duality holds or not for linear programs...
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Strong Duality

• For linear programs, strong duality is always ensured.

• We use the simplex’s convergence to the optimal solution in this proof.

• We will cover a more geometric approach in the next lecture.

Theorem 4. if an LP has an optima, so does its dual, and their respective

optimal objectives are equal.

• Proof strategy:

◦ prove it first for a standard form LP, showing that the reduced cost
coefficient can be used to define a dual feasible solution..

◦ For a general LP, use Theorem 2
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Strong Duality: Proof 1

Proof. • Consider the standard form

minimize cTx

subject to Ax = b

x ≥ 0

• Let’s use the simplex with the lexicographic rule for instance. Let x be the
optimal solution with basis I and objective z.

• The reduced costs must be nonnegative (here we have a min problem) hence

cT − cT
I B

−1
I A ≥ 0T

• Let µT = cT
I B

−1
I . Then µTA ≤ cT coordinate wise.

• µ is a feasible solution to the dual problem.

• Furthermore µTb = cT
I B

−1
I b = cT

I xI = z.

• µ is thus optimal w.r.t to the dual following the previous corollary.
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Strong Duality: Proof 2

• Suppose now that we have a general LP (1).

• Through operations as described in Theorem 2 the program is changed into an
equivalent standard program (2). They share the same optimal cost.

• The dual of program (D2) has the same optimal cost in turn.

• Both (D2) and (D1) have the same optimal cost by Theorem 2.

• Hence (1) and (D1) have the same optimal cost.
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Complementary slackness

• Another important result that links both optima:

Theorem 5. Let x and µ be feasible solutions to the primal and dual
problems respectively. The vectors for x and µ are optimal solutions for the
two respective problems if and only if

ui = µi(A
T
i x − bi) = 0, i = 1, ..,m;

vj = (cj − µTaj)xj = 0, j = 1, .., n.

Proof. In the proof of the weak duality we showed that ui, vj ≥ 0. Moreover

0 ≤
m∑

i

ui +
n∑

j

vj = cTx − µTb.

Hence, x, µ optimal ⇔ ui = vj = 0 through strong duality (⇒) and the second
corollary of weak duality (⇐).
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Examples for LP’s
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Duality

• A simple example with the following linear program:

minimize 3x1 + x2

subject to x2 − 2x1 = 1
x1, x2 ≥ 0

• Two inequality constraints, one equality constraint. The Lagrangian is written:

L(x, λ, µ) = 3x1 + x2 − λ1x1 − λ2x2 + µ(1 − x2 + 2x1)

in the (dual variables) λ1, λ2 ≥ 0 and µ (free).
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Duality

g(λ, µ) = inf
x
L(x, λ, µ)

= inf
x

3x1 + x2 − λ1x1 − λ2x2 + µ(1 − x2 + 2x1)

= inf
x

(3 − λ1 + 2µ)x1 + (1 − λ2 − µ)x2 + µ

• We minimize a linear function of x1, x2, only two possibilities:

g(λ, µ) =

{
µ if 3 − λ1 + 2µ = 1 − λ2 − µ = 0
−∞ otherwise

• The dual problem is finally:

maximize µ
subject to 3 − λ1 + 2µ = 0

1 − λ2 − µ = 0, λ ≥ 0
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LP’s, Duality and Arbitrage
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Duality and Arbitrage

• We propose in this an economic interpretation of duality

• Due to Arrow, Debreu, in the 50’s. . .

• Used every day on financial markets (sometimes unknowingly)

• Simple LP duality result, but underpins most of modern finance theory. . .

VNU June 12-17 47



One period model

• As in the previous section, basic discrete, one period model on a single asset.

• Its price today is q1. Its (random) price time T ahead is x.

• Assume x can only take any of the following values

x ∈ {x1, . . . , xn}

at a maturity date T , and that we have an estimate of their probabilities,

{p1, · · · , pn}.

• We have discretized the space of possibilities.

• We can only trade today and at maturity

• There is a cash security worth $1 today, that pays $1 at maturity

• near-zero interest rates. sounds familiar?

VNU June 12-17 48



One period model

• There are also m− 1 other securities with payoffs at maturity given by

hk(xi) if x = xi at time T

for k = 2, . . . ,m− 1.

• The payoffs are arbitrary functions of the n possible values of the asset at
time T .

• We could have hk(x) = x2. Or that for i ≤ j, hk(xi) = 0, i > j, hk(xi) = 1.

• We denote by qk the price today of security k with payoff hk(x).

All these securities are tradeable, can we use them to get information on the price
of another security with payoff h0(x)?
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Static Arbitrage

Remember:

• We can only trade today and at maturity.

• We can only trade in securities which are priced by the market.

We want to exclude arbitrage strategies

• If the payoff of a portfolio A is always larger than that of a portfolio B then
Price(A) ≥ Price(B).

• The price of the sum of two products is equal to the sum of the prices.
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Simplest Example: Put Call Parity

payoff

K

KK S

Put Call−

− =

= K − S
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Price bounds

Suppose that we form a portfolio of cash, stocks and securities hk(x) with
coefficients λk:

λ0 in cash
λ1 in stock
λk in security hk(x)

• All portfolios that satisfy

λ0 + λ1xi +
m∑

k=2

λkhk(xi) ≥ h0(xi) i=1,. . . ,n

must be more expensive than the security h0(x)

• All portfolios that satisfy the opposite inequality must be cheaper

• For portfolios that satisfy neither of these, nothing can be said. . .

• We are just comparing portfolios dominated for all outcomes of x.
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Price bounds

• For each of these portfolios, we get an upper/lower bound on the price today
of the security h0(x).

• We can look for optimal bounds. . .

• We can solve:

minimize λ0 + λ1q1 +
∑m

k=1 λkqk

subject to λ0 + λ1xi +
∑m

k=2 λkhk(xi) ≥ h0(xi), i = 1, . . . , n

◦ Linear program in the variable λ ∈ R(m+1)

◦ Produces an optimal upper bound on the price today of the security h0(x)
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Linear Programming Duality

• The original linear program looks like:

minimize cTλ
subject to Aλ ≥ b

which is a linear program in the variable λ ∈ Rm.

• We can form the Lagrangian

L(λ, p) = cTλ+ yT (b−Aλ)

in the variables λ ∈ Rm and y ∈ Rn, with y � 0.
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Linear Programming Duality

• We then minimize in λ to get the dual function

g(y) = inf
λ
cTλ+ yT (b−Aλ)

for y � 0, which is again

g(y) = inf
λ
yT b+ λT (c−ATy)

and we get:

g(y) =

{
yT b if c−ATy = 0
−∞ if not.
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Linear Programming Duality

• With

g(y) =

{
yT b if c−ATy = 0
−∞ if not.

• we get the dual linear program as:

maximize bTy
subject to ATy = c

y ≥ 0

which is also a linear program in x ∈ Rn.
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LP duality: summary

• The primal LP is the original linear program looks like:

minimize cTλ
subject to Aλ ≥ b

• its dual is then given by:

maximize bTy
subject to ATy = c

y ≥ 0

Strong duality: both optimal values are equal
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LP duality & arbitrage

• Let’s look at what this produces for the portfolio problem. . .

◦ The primal problem in the variable λ ∈ Rm is given by:

pmax := min. λ0 + λ1q1 +
∑m

k=2 λkqk

s.t. λ0 + λ1xi +
∑m

k=2 λkhk(xi) ≥ h0(xi), i = 1, . . . , n

◦ The dual in the variable y ∈ Rn is then

pmax := max.
∑n

i=1 yih0(xi)

s.t.
∑n

i=1 yihk(xi) = qk, k = 2, . . . ,m∑n
i=1 yixi = q1∑n
i=1 yi = 1

y ≥ 0
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LP duality & arbitrage

• The last two constraints {∑n
i=1 yi = 1, y ≥ 0} mean that y is a probability

measure.

• We can rewrite the previous program as:

pmax := max. Ey[h0(x)]

s.t. Ey[hk(x)] = qk, k = 2, . . . ,m
Ey[x] = q1
y is a probability

• We can compute pmin by minimizing instead.
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LP duality & arbitrage

• What does this mean?

• There are three ranges of prices for the security with payoff h0(x):

◦ Prices above pmax: these are not viable, you can get a cheaper portfolio
with a payoff that always dominates h0(x).

◦ Prices in [pmin, pmax]: prices are viable, i.e. compatible with the absence of
arbitrage.

◦ Prices below pmin: these are not viable, you can get a portfolio that is more
expensive than h0(x) with a payoff that is always dominated by h0(x).
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Price bounds

• Example:

◦ Suppose the product in the objective is a call option:

h0(x) = (x−K)+

where K is called the strike price.
◦ Suppose also that we know the prices of some other instruments
◦ We get upper and lower price bounds on the price of this call for each strike K

• On a graphic. . .
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LP duality & arbitrage

• What if there is no solution y and the linear program is infeasible?

◦ Then the original data set q must contain an arbitrage.
◦ Start with one product, stock and cash. . . and test.
◦ Increase the number of products. . .
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LP duality & arbitrage

Fundamental theorem of asset pricing

Theorem 6. In the one period model, there is no arbitrage between the prices
{q0, . . . , qm} of securities with payoffs at maturity {h0(x), . . . , hm(x)}

m

There exists a probability y (with
∑n

i=1 yi = 1 and y ≥ 0) such that

qk = Ey[hk(x)], k = 0, . . . ,m
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LP duality & arbitrage

• Because prices are computed using expectations under y (and not expected
utility/certain equivalent), we call the probability y risk-neutral.

• In particular, it satisfies q1 = Ey[x]

• If there are constant interest rates, simply use discounted values for prices at
maturity. . .

• This probability y has nothing to do with the observed distribution of the
asset x or its past distribution! (Very common mistake)
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LP duality & arbitrage

• Because one can trade

◦ the asset
◦ derivative products based on the asset

to form portfolios to hedge/replicate other products, it is possible to evaluate
these products using expected value under an appropriate choice of
probability.

• Again, the risk-neutral probability y is a tool inferred from market prices,

• it has nothing to do with the statistical properties of the underlying asset x.

• Linear programming duality is interpreted as a duality between portfolios on
assets problems and probabilities (models)
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LP duality & arbitrage

In the previous result:

• Set of possible probabilistic models = probability simplex:
pi ≥ 0,

∑
i pi = 1

• Expected value, hence price is linear in the probability pi

E[h(x)] =
∑

i

pih(xi)

• A price constraint is just a linear equality constraint on the probabilities:

∑

i

pih(xi) = bi

• Simple family of distributions.
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Moment constraints

Choices for asset pricing formulas that depend on the prices directly:. . .

• Use indicator function as payoff:

h(x) = 1{x≥K}

to produce the constraint:

∑

i

pi 1{xi≥K} = P (X ≥ K) = b

• Also, quadratic variation:
h(x) = x2

Corresponds to: ∑

i

pi x
2
i = E[x2

i ] = b
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Moment constraints

Higher order formulations? Variance?

• We can’t incorporate a variance swap

• A constraint of the form
Variance(x) = qV

why?

• Becomes
∑

i pix
2
i − (

∑
i pixi)

2 = qV ⇒ quadratic constraints in pi.

• Would however works if we also fix the expected value:

E[x] = b

Corresponds to a forward price (EV of the asset):

∑

i

pi xi = qF and Variance(x) =
∑

i

pi x
2
i − q2F = qV

• We came back to a simple linear constraint
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Option price vs. variance

• Fix the forward price (expected value of the asset), move the variance. . .

• We study the price of a call option h0.

maximize
∑

i pi h0(xi)

subject to
∑

i pi xi = S0

∑
i pi x

2
i = b2

0 ≤ pi ≤ 1,

• Look at the price as a function of b2. . .
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Option price vs. variance
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Option pricing & LP: example
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Option pricing

Option pricing example. . .

• Study the price CutCall option, with payoff:

h0(X) = (X −K)+1{X≤L}

• Similar to knock-out option but only check at maturity. No knock-out
during its life, european kind of knock-out.

• Get some market prices qk for regular calls:

hk(X) = (X −Kk)
+

• Solve for the maximum CutCall price:

maximize
∑

i pih0(xi)
subject to

∑
i pihk(xi) = qk∑
i pi = 1

pi ≥ 0
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Option pricing

Solve
maximize

∑
i pih0(xi)

subject to
∑

i pihk(xi) = qk∑
i pi = 1

pi ≥ 0

with
K = {50, 80, 110, 120, 150, 280}

and vector of prices for the 6 options.

q = (102.9167, 79.5667, 59.2167, 53.1000, 36.7500, 0.5667)

• Prices were computed above using the uniform distribution on [0, 300]

• Result: maximum price for the CutCall is 59

• Next slide: risk neutral distribution for that maximal price.
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Corresponding Risk-Neutral Probability
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Option pricing

• Problem in dimension 2, price a basket options with payoff

(x1 + x2 −K)+

• The input data set is composed of the asset prices together with the following
call prices:

(.2x1 + x2 − .1)+, (.5x1 + .8x2 − .8)+,
(.5x1 + .3x2 − .4)+, (x1 + .3x2 − .5)+,
(x1 + .5x2 − .5)+, (x1 + .4x2 − 1)+,
(x1 + .6x2 − 1.2)+.
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Option pricing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

strike

pr
ic

e

Price bounds

VNU June 12-17 78



Option pricing

Run another test:

• Look at how these bounds evolve as more and more instruments are
incorporated into the data set.

• Fix K = 1, we compute the bounds using only the k first instruments in the
data set, for k = 2, . . . , 7.

• Plot the upper and lower bounds

• Also plot one of the solutions

Conclusion: more market values ⇒ tighter bounds
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Option pricing
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Option pricing

0

0.1

Figure 1: Example of discrete distribution minimizing
the price of (x1 + x2 − K)+.
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Caveats

Size!

• Grows exponentially in kn with the number of points

• Only works with discrete and bounded models

Everything comes at a price. . .
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Duality in a more general setting
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Example: Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning i, j to
the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x

(xTWx+
∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x− 1Tν

=

{
−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p⋆ ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W )1 gives bound p⋆ ≥ nλmin(W )
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Lagrange dual and conjugate function

minimize f0(x)
subject to Ax � b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(
f0(x) + (ATλ+ CTν)Tx− bTλ− dTν

)

= −f∗0 (−ATλ− CTν) − bTλ− dTν

• f∗0 is the convex conjugate of f0: f
∗(y) = supx∈dom f(yTx− f(x))

• simplifies derivation of dual if conjugate of f0 is known

example: entropy maximization

f0(x) =
n∑

i=1

xi log xi, f∗0 (y) =
n∑

i=1

eyi−1

VNU June 12-17 85



Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(
xTPx+ λT (Ax− b)

)
= −1

4
λTAP−1ATλ− bTλ

dual problem
maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ always
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A nonconvex problem with strong duality

minimize xTAx+ 2bTx
subject to xTx ≤ 1

nonconvex if A 6� 0

dual function: g(λ) = infx(xT (A+ λI)x+ 2bTx− λ)

• unbounded below if A+ λI 6� 0 or if A+ λI � 0 and b 6∈ R(A+ λI)

• minimized by x = −(A+ λI)†b otherwise: g(λ) = −bT (A+ λI)†b− λ

dual problem:
maximize −bT (A+ λI)†b− λ
subject to A+ λI � 0

b ∈ R(A+ λI)

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G
• hyperplane intersects t-axis at t = g(λ)
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epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical
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Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(
f0(x) +

m∑

i=1

λ⋆
i fi(x) +

p∑

i=1

ν⋆
i hi(x)

)

≤ f0(x
⋆) +

m∑

i=1

λ⋆
i fi(x

⋆) +

p∑

i=1

ν⋆
i hi(x

⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ � 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m∑

i=1

λi∇fi(x) +

p∑

i=1

νi∇hi(x) = 0

if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT
conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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example: water-filling (assume αi > 0)

minimize −∑n
i=1 log(xi + αi)

subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1 max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆

i

1/ν⋆

xi

αi
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Unconstrained Convex Optimization

Algorithms

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation
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Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k)) → p⋆

• can be interpreted as iterative methods for solving optimality condition

∇f(x⋆) = 0
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Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

• x(0) ∈ dom f

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

• equivalent to condition that epi f is closed

• true if dom f = Rn

• true if f(x) → ∞ as x→ ddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(
m∑

i=1

exp(aT
i x+ bi)), f(x) = −

m∑

i=1

log(bi − aT
i x)
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) + ∇f(x)T (y − x) +
m

2
‖x− y‖2

2

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x) − p⋆ ≤ 1

2m
‖∇f(x)‖2

2

useful as stopping criterion (if you know m)
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Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

• other notations: x+ = x+ t∆x, x := x+ t∆x

• ∆x is the step, or search direction; t is the step size, or step length

• from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.
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Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

• starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

• graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x
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Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ‖∇f(x)‖2 ≤ ǫ

• convergence result: for strongly convex f ,

f(x(k)) − p⋆ ≤ ck(f(x(0)) − p⋆)

c ∈ (0, 1) depends on m, x(0), line search type

• very simple, but often very slow; rarely used in practice
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quadratic problem in R2

f(x) = (1/2)(x2
1 + γx2

2) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

• very slow if γ ≫ 1 or γ ≪ 1

• example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4
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nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search
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a problem in R100

f(x) = cTx−
500∑

i=1

log(bi − aT
i x)

f−
fs

t

k

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) + ∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆sd = −‖∇f(x)‖2
∗

steepest descent method

• general descent method with ∆x = ∆xsd

• convergence properties similar to gradient descent

VNU June 12-17 104



examples

• Euclidean norm: ∆xsd = −∇f(x)

• quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn
++): ∆xsd = −P−1∇f(x)

• ℓ1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm and the
ℓ1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd
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choice of norm for steepest descent

x(0)

x(1)
x(2)

x(0)

x(1)

x(2)

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {x | ‖x− x(k)‖P = 1}
• equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :

gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence
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Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

• x+ ∆xnt minimizes second order approximation

f̂(x+ v) = f(x) + ∇f(x)Tv +
1

2
vT∇2f(x)v

• x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) + ∇2f(x)v = 0

f

bf

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

bf ′

(x, f ′(x))

(x + ∆xnt, f ′(x + ∆xnt))
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• ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}
arrow shows −∇f(x)
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Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

properties

• gives an estimate of f(x) − p⋆, using quadratic approximation f̂ :

f(x) − inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xnt∇2f(x)∆xnt

)1/2

• directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)
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Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.
repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).
2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)
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Classical convergence analysis

assumptions

• f strongly convex on S with constant m

• ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x) −∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

• if ‖∇f(x)‖2 ≥ η, then f(x(k+1)) − f(x(k)) ≤ −γ
• if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2
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damped Newton phase (‖∇f(x)‖2 ≥ η)

• most iterations require backtracking steps

• function value decreases by at least γ

• if p⋆ > −∞, this phase ends after at most (f(x(0)) − p⋆)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

• all iterations use step size t = 1

• ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤
(

1

2

)2l−k

, l ≥ k
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conclusion: number of iterations until f(x) − p⋆ ≤ ǫ is bounded above by

f(x(0)) − p⋆

γ
+ log2 log2(ǫ0/ǫ)

• γ, ǫ0 are constants that depend on m, L, x(0)

• second term is small (of the order of 6) and almost constant for practical
purposes

• in practice, constants m, L (hence γ, ǫ0) are usually unknown

• provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R2 (page 102)

x(0)

x(1)

k

f
(x

(k
) )

−
p

⋆

0 1 2 3 4 5
10−15

10−10

10−5

100

105

• backtracking parameters α = 0.1, β = 0.7

• converges in only 5 steps

• quadratic local convergence
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example in R100 (page 103)

f−
fs

t

k

exact line search

backtracking
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10−15

10−10

10−5

100

105

k
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exact line search

backtracking
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0

0.5

1

1.5

2

• backtracking parameters α = 0.01, β = 0.5

• backtracking line search almost as fast as exact l.s. (and much simpler)

• clearly shows two phases in algorithm
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example in R10000 (with sparse ai)

f(x) = −
10000∑

i=1

log(1 − x2
i ) −

100000∑

i=1

log(bi − aT
i x)

f−
fs

t

k
0 5 10 15 20

10−5

100

105

• backtracking parameters α = 0.01, β = 0.5.

• performance similar as for small examples
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A few words on Self-concordance

shortcomings of classical convergence analysis

• depends on unknown constants (m, L, . . . )

• bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (‘self-concordant’ functions)

• developed to analyze polynomial-time interior-point methods for convex
optimization

• Please check Boyd & Vandenberghe book for a review!
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = g

where H = ∇2f(x), g = −∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = L−TL−1g, λ(x) = ‖L−1g‖2

• cost (1/3)n3 flops for unstructured system

• cost ≪ (1/3)n3 if H sparse, banded
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example of dense Newton system with structure

f(x) =
n∑

i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

• assume A ∈ Rp×n, dense, with p≪ n

• D diagonal with diagonal elements ψ′′
i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2: factor H0 = L0L
T
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD

−1AL0)
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Convex Optimization Algorithms With

Equality Constraints

• equality constrained minimization

• Newton’s method with equality constraints

• infeasible start Newton method

• implementation
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Equality constrained minimization

minimize f(x)
subject to Ax = b

• f convex, twice continuously differentiable

• A ∈ Rp×n with RankA = p

• we assume p⋆ is finite and attained

optimality conditions: x⋆ is optimal iff there exists a ν⋆ such that

∇f(x⋆) +ATν⋆ = 0, Ax⋆ = b
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equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition: [
P AT

A 0

] [
x⋆

ν⋆

]
=

[
−q
b

]

• coefficient matrix is called KKT matrix

• KKT matrix is nonsingular if and only if

Ax = 0, x 6= 0 =⇒ xTPx > 0

• equivalent condition for nonsingularity: P +ATA ≻ 0
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of

[
∇2f(x) AT

A 0

] [
∆xnt

w

]
=

[
−∇f(x)

0

]

interpretations

• ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) + ∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

• equations follow from linearizing optimality conditions

∇f(x+ ∆xnt) +ATw = 0, A(x+ ∆xnt) = b
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Newton decrement

λ(x) =
(
∆xT

nt∇2f(x)∆xnt

)1/2
=
(
−∇f(x)T∆xnt

)1/2

properties

• gives an estimate of f(x) − p⋆ using quadratic approximation f̂ :

f(x) − inf
Ay=b

f̂(y) =
1

2
λ(x)2

• directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

• in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

VNU June 12-17 124



Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ǫ > 0.

repeat
1. Compute the Newton step and decrement ∆xnt, λ(x).
2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

• a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

• affine invariant
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Newton step at infeasible points

extends to infeasible x (i.e., Ax 6= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives

[
∇2f(x) AT

A 0

] [
∆xnt

w

]
= −

[
∇f(x)
Ax− b

]
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) +ATν,Ax− b)

• linearizing r(y) = 0 gives r(y + ∆y) ≈ r(y) +Dr(y)∆y = 0:

[
∇2f(x) AT

A 0

] [
∆xnt

∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]

same as (1) with w = ν + ∆νnt
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Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat
1. Compute primal and dual Newton steps ∆xnt, ∆νnt.
2. Backtracking line search on ‖r‖2.

t := 1.
while ‖r(x+ t∆xnt, ν + t∆νnt)‖2 > (1 − αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x+ t∆xnt, ν := ν + t∆νnt.
until Ax = b and ‖r(x, ν)‖2 ≤ ǫ.

• not a descent method: f(x(k+1)) > f(x(k)) is possible

• directional derivative of ‖r(y)‖2
2 in direction ∆y = (∆xnt,∆νnt) is

d

dt
‖r(y + ∆y)‖2

∣∣∣∣
t=0

= −‖r(y)‖2
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Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

solution methods

• LDLT factorization

• elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

• elimination with singular H: write as

[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]

with Q � 0 for which H +ATQA ≻ 0, and apply elimination
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Equality constrained analytic centering

primal problem: minimize −∑n
i=1 log xi subject to Ax = b

dual problem: maximize −bTν +
∑n

i=1 log(ATν)i + n

three methods for an example with A ∈ R100×500, different starting points

1. Newton method with equality constraints (requires x(0) ≻ 0, Ax(0) = b)

k

f
(x

(k
) )

−
p

⋆

0 5 10 15 2010−10

10−5

100

105
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2. Newton method applied to dual problem (requires ATν(0) ≻ 0)

k

p
⋆
−

g
(ν

(k
) )

0 2 4 6 8 1010−10

10−5

100

105

3. infeasible start Newton method (requires x(0) ≻ 0)

k

‖
r
(x

(k
)
,
ν

(k
) )
‖

2
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1010
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−11

0

]

reduces to solving Adiag(x)2ATw = b

2. solve Newton system Adiag(ATν)−2AT∆ν = −b+ Adiag(ATν)−11

3. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−11

Ax− b

]

reduces to solving Adiag(x)2ATw = 2Ax− b

conclusion: in each case, solve ADATw = h with D positive diagonal
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Network flow optimization

minimize
∑n

i=1 φi(xi)
subject to Ax = b

• directed graph with n arcs, p+ 1 nodes

• xi: flow through arc i; φi: cost flow function for arc i (with φ′′i (x) > 0)

• node-incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =






1 arc j leaves node i
−1 arc j enters node i

0 otherwise

• reduced node-incidence matrix A ∈ Rp×n is Ã with last row removed

• b ∈ Rp is (reduced) source vector

• RankA = p if graph is connected
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KKT system

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

• H = diag(φ′′1(x1), . . . , φ
′′
n(xn)), positive diagonal

• solve via elimination:

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT )ij 6= 0 ⇐⇒ (AAT )ij 6= 0

⇐⇒ nodes i and j are connected by an arc
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The real deal: General Convex Problems

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities

VNU June 12-17 134



Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with RankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g., piecewise-linear
minimization or ℓ∞-norm approximation via LP
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x) − (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a smooth
approximation of I−

• approximation improves as t→ ∞

u
−3 −2 −1 0 1

−5

0

5

10
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logarithmic barrier function

φ(x) = −
m∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =

m∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +

m∑

i=1

1

−fi(x)
∇2fi(x)
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Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to level
curve of φ through x⋆(t)

c

x⋆ x⋆(10)
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Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +
m∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +
m∑

i=1

λ⋆
i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆
i (t) = 1/(−tfi(x

⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x
⋆(t)) → p⋆ if t→ ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t), λ⋆(t), ν⋆(t))

= f0(x
⋆(t)) −m/t
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Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tf0(x) −
∑m

i=1 log(−fi(x))

force field interpretation

• tf0(x) is potential of force field F0(x) = −t∇f0(x)
• − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x⋆(t):

F0(x
⋆(t)) +

m∑

i=1

Fi(x
⋆(t)) = 0
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example
minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

• objective force field is constant: F0(x) = −tc
• constraint force field decays as inverse distance to constraint hyperplane:

Fi(x) =
−ai

bi − aT
i x
, ‖Fi(x)‖2 =

1

dist(x,Hi)

where Hi = {x | aT
i x = bi}

−c

−3c

t = 1 t = 3
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if m/t < ǫ.
4. Increase t. t := µt.

• terminates with f0(x) − p⋆ ≤ ǫ (stopping criterion follows from
f0(x

⋆(t)) − p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations, more
inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)
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Convergence analysis

number of outer (centering) iterations: exactly

⌈
log(m/(ǫt(0)))

log µ

⌉

plus the initial centering step (to compute x⋆(t(0)))

centering problem
minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

• tf0 + φ must have closed sublevel sets for t ≥ t(0)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of tf0 + φ
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations
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• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ ≥ 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(aT
0kx+ b0k)

)

subject to log
(∑5

k=1 exp(aT
ikx+ bik)

)
≤ 0, i = 1, . . . ,m

Newton iterations
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family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax

n
u
m

b
er
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bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 solutions
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example: family of linear inequalities Ax � b+ γ∆b

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

• use basic phase I, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|γ|)
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Complexity analysis via self-concordance

same assumptions as on page 135, plus:

• sublevel sets (of f0, on the feasible set) are bounded

• tf0 + φ is self-concordant with closed sublevel sets

second condition

• holds for LP, QP, QCQP

• may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi

subject to Fx � g
−→ minimize

∑n
i=1 xi log xi

subject to Fx � g, x � 0

• needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

γ
+ c

• bound on effort of computing x+ = x⋆(µt) starting at x = x⋆(t)

• γ, c are constants (depend only on Newton algorithm parameters)

• from duality (with λ = λ⋆(t), ν = ν⋆(t)):

µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

= µtf0(x) − µtf0(x
+) +

m∑

i=1

log(−µtλifi(x
+)) −m logµ

≤ µtf0(x) − µtf0(x
+) − µt

m∑

i=1

λifi(x
+) −m−m logµ

≤ µtf0(x) − µtg(λ, ν) −m−m logµ

= m(µ− 1 − logµ)
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total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈
log(m/(t(0)ǫ))

logµ

⌉(
m(µ− 1 − logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows N for typical values of γ, c,

m = 100,
m

t(0)ǫ
= 105

• confirms trade-off in choice of µ

• in practice, #iterations is in the tens; not very sensitive for µ ≥ 10
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polynomial-time complexity of barrier method

• for µ = 1 + 1/
√
m:

N = O

(√
m log

(
m/t(0)

ǫ

))

• number of Newton iterations for fixed gap reduction is O(
√
m)

• multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ fixed
(µ = 10, . . . , 20)
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if (

∑
i θi)/t < ǫ.

4. Increase t. t := µt.

• only difference is duality gap m/t on central path is replaced by
∑

i θi/t

• number of outer iterations:

⌈
log((

∑
i θi)/(ǫt

(0)))

logµ

⌉
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