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Outline of this module

• Short historical introduction to mathematical programming

• Start with linear programming.

◦ introduce convexity,
◦ an important algorithm: simplex

• Follow with convex programming

◦ study convex programs,
◦ define duality,
◦ study algorithms.
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Mathematical Programming

• The term programming in mathematical programming is actually not related
to computer programs.

• Dantzig explains the jargon in 2002 (document available on BB)

◦ The military refer to their various plans or proposed schedules of

training, logistical supply and deployment of combat units as a program.

When I first analyzed the Air Force planning problem and saw that it

could be formulated as a system of linear inequalities, I called my paper

Programming in a Linear Structure. Note that the term program was used

for linear programs long before it was used as the set of instructions

used by a computer. In the early days, these instructions were called

codes.
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Mathematical Programming

◦ In the summer of 1948, Koopmans and I visited the Rand Corporation. One

day we took a stroll along the Santa Monica beach. Koopmans said: Why

not shorten Programming in a Linear Structure to Linear Programming? I

replied: Thats it! From now on that will be its name. Later that day I

gave a talk at Rand, entitled Linear Programming; years later Tucker

shortened it to Linear Program.

◦ The term Mathematical Programming is due to Robert Dorfman of Harvard,

who felt as early as 1949 that the term Linear Programming was too

restrictive.
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Mathematical Programming

• Today mathematical programming is synonymous with optimization. A
relatively new discipline and one that has had significant impact.

◦ What seems to characterize the pre-1947 era was lack of any interest

in trying to optimize. T. Motzkin in his scholarly thesis written in

1936 cites only 42 papers on linear inequality systems, none of which

mentioned an objective function.
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Origins & Success

• Monge’s 1781 memoir is the earliest known anticipation of Linear
Programming type of problems, in particular of the transportation problem
(moving piles of dirt into holes).

• In the early 40’s significant work can also be attributed to Kantorovich in the
USSR (Nobel 75) on transport planning as well. More dramatic application:
road of life from & to Leningrad during WW2.

• Dantzig proposed a general method to solve LP’s in 1947, the simplex
method, which ranks among the top 10 algorithms with the greatest

influence on the development and practice of science and engineering in the

20th century according to the journal Computing in Science & Engineering.

• Other laureates: metropolis, FFT, quicksort, Krylov subspaces, QR
decomposition etc.
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Mathematical Programming

• A general formulation for a mathematical programming problem is that of
defining the unknown variables x1, x2, · · · , xn ∈ X1 ×X2 × · · · × Xn such that

minimize (or mazimize) f(x1, x2, · · · , xn),

subject to gi(x1, x2, · · · , xn)

{
<,>

=

≤,≥

}

bi, i = 1, 2, · · · , m;

where the bi’s are real constants and the functions f (the objective) and
g1, g2, · · · , gm (the constraints) are real-valued functions of
X1 ×X2 × · · · × Xn.

• the sets Xi need not be the same, as Xi might be

◦ R scalar numbers,
◦ Z integers,
◦ S+

n positive definite matrices,
◦ strings of letters,
◦ etc.

• When the Xi are different, the adjective mixed usually comes in.
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Linear Programs in Rn

• the general form of linear programs in Rn:

max or min z = c1x1 + c2x2 + · · ·+ cnxn,

subject to







a11x1 + a12x2 + · · · + a1nxn

{
<,>

=

≤,≥

}

b1,

... ...

am1x1 + am2x2 + · · · + amnxn

{
<,>

=

≤,≥

}

bm,

where x1≥ 0, x2≥ 0, · · · , xn≥ 0.

• linear objective, linear constraints... simple.

• yet powerful for many problems and one of the first classes of mathematical
programs that was solved.
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Linear Programs, landmarks in history

• First solution by Dantzig in the late 40’s, the simplex.

• At the time, programs were solved by hand, the algorithm reflects this.

• In 1972, Klee and Minty show that the simplex has an exponential worst case
complexity.

• Low complexity of linear programming proved (in theory) by Nemirovski, Yudin
and Khachiyan in the USSR in 1976.

• First efficient algorithm with provably low complexity discovered by Karmarkar
at Bell Labs in 1984.
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Mathematical Programming Subfields

• convex programming: f is a convex function and the constraints gi, if any,
form a convex set.

◦ Linear programming.
◦ Second order cone programming (SOCP).
◦ Semidefinite Programming, that is linear programs in S+

n .
◦ Conic programming, with more general cones.

• Quadratic programming (QP), with quadratic objectives and linear constraints,

• Nonlinear programming,

• Stochastic programming,

• Combinatorial programming: discrete set of feasible solutions. integer
programming, that is LP’s with integer variables, is a subfield.
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Some examples
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The Diet Problem

• Most introductions to LP start with the diet problem.

• The reason: historically, one of the first large scale LP’s that was computed.
More on this later.

• You’re a (bad) cook obsessed with numbers trying to come up with a new
cheap dish that meets nutrition standards.

• You summarize your problem in the following way:
Ingredient Carrot Cabbage Cucumber Required per dish
Vitamin A [mg/kg] 35 0.5 0.5 0.5mg
Vitamin C [mg/kg] 60 300 10 15mg
Dietary Fiber [g/kg] 30 20 10 4g
Price [$/kg] 0.75 0.5 0.15 -
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The Diet Problem

• Let x1, x2 and x3 be the amount in kilos of carrot, cabbage and cucumber in
the new dish.

• Mathematically,

minimize 0.75x1 + 0.5x2 + 0.15x3, cheap,
subject to 35x1 + 0.5x20.5x3 ≥ 0.5, nutritious,

60x1 + 300x2 + 10x3 ≥ 15,
30x1 + 20x2 + 10x3 ≥ 4,

x1, x2, x3 ≥ 0. reality.

• The program can be solved by standard methods. The optimal solution yields a
price of 0.07$ pre dish, with 9.5g of carrot, 38g of cabbage and 290g of
cucumber...
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The Diet Problem

• The first large scale experiment for the simplex algorithm: 77 variables
(ingredients) and 9 constraints (health guidelines)

• The solution, computed by hand-operated desk calculators took 120 man-days.

• The first recommendation was to drink several liters of vinegar every day.

• When vinegar was removed, Dantzig obtained 200 bouillon cubes as the basis
of the diet.

• This illustrates that a clever and careful mathematical modeling is always
important before solving anything.
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Flow of packets in Networks

We follow with an example in networks:

• We use the internet here, but this could be any network (factory floor,
transportation, etc).

• Transport data packets from a source to a destination.

• For simplicity: two sources, two destinations.

• Each link in the network has a fixed capacity (bandwidth), shared by all the
packets in the network.
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Networks: Routing

• When a link is saturated (congestion), packets are simply dropped.

• Packets are dropped at random from those coming through the link.

• Objective: choose a routing algorithm to maximize the total bandwidth of the
network.

This randomization is not a simplification. TCP/IP, the protocol behind the
internet, works according to similar principles.. . .
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Networks: Routing
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Networks: Routing

A model for the network routing problem: let N = {1, 2, . . . , 13} be the set of
network nodes and L = {(1, 3), . . . , (11, 13)} the set of links.

Variables:

• xij the flow of packets with origin 1 and destination 1, going through the link
between nodes i and j.

• yij the flow of packets with origin 2 and destination 2, going through the link
between nodes i and j.

Parameters:

• uij the maximum capacity of the link between nodes i and j.
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Networks: Routing

In EXCEL. . .
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Routing problem: Modeling

Write this as an optimization problem.

Consistency constraints:

• Flow coming out of a node must be less than incoming flow:

∑

j: (i,j)∈L

xij ≤
∑

j: (j,i)∈L

xij, for all nodes i

and ∑

j: (i,j)∈L

yij ≤
∑

j: (j,i)∈L

yij, for all nodes i

• Flow has to be positive:

xij, yij ≥ 0, for all (i, j) ∈ L
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Routing problem: Modeling

Capacity constraints:

• Total flow through a link must be less than capacity:

xij + yij ≤ uij, for all (i, j) ∈ L

• No packets originate from wrong source:

x2,4, x2,5, y1,3, y1,4 = 0

Objective:

• Maximize total throughput at destinations:

maximize x9,13 + x10,13 + x11,13 + y9,12 + y10,12
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Routing problem: Modelling

The final program is written:

maximize x9,13 + x10,13 + x11,13 + y9,12 + y10,12

subject to
∑

j: (i,j)∈L

xij ≤
∑

j: (j,i)∈L

xij

∑

j: (i,j)∈L

yij ≤
∑

j: (j,i)∈L

yij

xij + yij ≤ uij

x2,4, x2,5, y1,3, y1,4 = 0

xij, yij ≥ 0, for all (i, j) ∈ L

Constraints and objective are linear: this is a linear program.
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Routing problem: Solving

• In this case, the model was written entirely in EXCEL

• EXCEL has a rudimentary linear programming solver (which does not work
very well for macs unfortunately)

• This is how the optimal solution was found here. In general, specialized solvers
are used (more later).

• Original solution, : network capacity of 3.7

• Optimal capacity: 14 !!
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Typology of Linear Programs
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Remember...

• the general form of linear programs:

max or min z = c1x1 + c2x2 + · · ·+ cnxn,

subject to







a11x1 + a12x2 + · · · + a1nxn

{
<,>

=

≤,≥

}

b1,

... ...

am1x1 + am2x2 + · · · + amnxn

{
<,>

=

≤,≥

}

bm,

where x1, x2, · · · , xn≥ 0.

• This form is however too vague to be easily usable.

• First step: get rid of the strict inequalities: do not bring much and would only
add numerical noise.

• Second step: use matrix and vectorial notations to alleviate.
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Notations

Unless explicitly stated otherwise,

• A, B etc... are matrices whose size is clear from context.

• x,b, a are vectors. a1, ak are members of a vector family.

• x =
[ x1...

xn

]

with vector coordinates xi in R.

• x ≥ 0 is meant coordinate-wise, that is xi ≥ 0 for 1 ≥ i ≤ n

• x 6= 0 means that x is not the zero vector, i.e. there exists at least one index i
such that xi 6= 0.

• xT is the transpose [ x1,··· ,xn ] of x.
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Linear Program

Common representation for all these programs?

• Would help in developing both theory & algorithms.

• Also helps when developing software, solvers, etc

The answer is yes. . .

• There are 2: standard form and canonical form
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Terminology

• A linear program in canonical form is the program

max or min cTx
subject to Ax ≤ b,

x ≥ 0.

b ≥ 0⇒ feasible canonical form (just a convention)

• A linear program in standard form is the program

max or min cTx (1)

subject to Ax = b, (2)

x ≥ 0. (3)
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Linear Programs: a look at the canonical form

Canonical form linear program

• Maximize the objective

• Only inequality constraints

• All variables should be positive

Example:
maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.
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Linear Programs: canonical form

Although more intuitive than the standard form, the canonical is not the most
useful,

• We will formulate the simplex method on problems with equality constraints,
that is standard forms.

• Solvers do not all agree on this input format. MATLAB for example uses:

minimize
∑

i cixi

subject to
∑n

j=1 Aijxj ≤ bi, i = 1, . . . ,m1
∑n

j=1 Bijxj = di, i = 1, . . . ,m2

li ≤ xi ≤ ui, i = 1, . . . , n

• Ultimately: this is a non-issue, we can easily switch from one form to the
other. . .
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Linear Programs: standard & canonical form

equalities ⇒ inequalities

• What if the original problem has equality constraints?

• Replace equality constraints by two inequality constraints.

• The inequality
2x1 + 3x2 + x3 = 5,

is equivalent to

2x1 + 3x2 + x3 ≤ 5 and 2x1 + 3x2 + x3 ≥ 5

• The new problem is equivalent to the previous one. . .
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Linear Programs: standard & canonical form

inequalities ⇒ equalities

• The opposite direction works too. . .

• Turn inequality constraints into equality constraints by adding variables.

• The inequality
2x1 + 3x2 + x3 ≤ 5,

is equivalent to

2x1 + 3x2 + x3 + w1 = 5 and w1 ≥ 0,

• The new variable is called a slack variable (one for each inequality in the
program). . .

• The new problem is equivalent to the previous one. . .
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Linear Programs: standard & canonical form

free variable ⇒ positive variables

• What about free variables?

• A free variable is simply the difference of its positive and negative parts. Again
the solution is again adding variables.

• If the variable y is free, we can write it

y1 = y2 − y3 and y2, y3 ≥ 0,

• We add two positive variables for each free variable in the program.

• Again, the new problem is equivalent to the previous one.
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Linear Programs: standard & canonical form

minimizing ⇒ maximizing

• What happens when the objective is to minimize? We can use the fact that

min
x

f(x) = −max
x
−f(x)

• In a linear program this means

minimize 6x1 − 3x2 + 5x3

becomes:
− maximize −6x1 + 3x2 − 5x3

That’s all we need to convert all linear programs in standard form. . .
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Linear Programs: standard & canonical form

Example. . .

minimize 2x1 − 4x2 + x3

subject to 2x1 + 7x2 + x3 = 5
4x1 + x2 + 9x3 ≤ 11
3x1 + 4x2 + 2x3 = 8

x1, x2 ≥ 0.

This program has one free variable (x3) and one inequality constraint. It’s a
minimization problem. . .
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Linear Programs: standard & canonical form

We first turn it into a maximization. . .

− maximize −2x1 + 4x2 − x3

subject to 2x1 + 7x2 + x3 = 5
4x1 + x2 + 9x3 ≤ 11
3x1 + 4x2 + 2x3 = 8

x1, x2 ≥ 0.

Just switch the signs in the objective. . .
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Linear Programs: standard & canonical form

We then turn the inequality into an equality constraint by adding a slack
variable. . .

− maximize −2x1 + 4x2 − x3

subject to 2x1 + 7x2 + x3 = 5
4x1 + x2 + 9x3 + w1 = 11
3x1 + 4x2 + 2x3 = 8

x1, x2, w1 ≥ 0.

Now, we only need to get rid of the free variable. . .
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Linear Programs: standard & canonical form

We replace the free variable by a difference of two positive ones:

− maximize −2x1 + 4x2 − (x4 − x5)
subject to 2x1 + 7x2 + x4 − x5 = 5

4x1 + x2 + 9x4 − 9x5 + w1 = 11
3x1 + 4x2 + 2x4 − 2x5 = 8

x1, x2, x4, x5, w1 ≥ 0.

• That’s it, we’ve reached a standard form.

• The simplex algorithm is easier to write with this form.

VNU June 12-17 38



To sum up...

• A linear program in standard form is the program

minimize cTx
subject to Ax = b,

x ≥ 0.
(4)

where

◦ c, x ∈ Rn – the objective,
◦ A ∈ Rm×n and b ∈ Rm – the equality constraints,
◦ x ≥ 0 means that for x = (x1, . . . , xn), xi ≥ 0 for 1 ≤ i ≤ n.

• From now on we focus on

◦ linear constraints Ax = b,
◦ objective function cTx,

separately.

• x ≥ 0 will reappear when we study convexity.
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Linear Equations
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Linear Equations

The usual linear equations we know, m = n

• In the usual linear algebra setting, A is square of size n and invertible.

• Straightforward: {x ∈ Rn|Ax = b} is a singleton, {A−1b}.

• Focus: find efficiently that unique solution. Many methods (Gaussian pivot,
Conjugate gradient etc.)

In classic statistics, most often m≫ n

• A few explicative variables, a lot of observations.

• Generally {x ∈ Rn|Ax = b} = ∅ so we need to tweak the problem

• Least-squares regression: select x0 | x0 = argmin |Ax− b|2

• More advanced, penalized LS regression: x0 = argmin(|Ax− b|2 + λ‖x‖)
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Linear Equations

On the other hand, in an LP setting where usually m < n

• {x ∈ Rn|Ax = b} is a wider set of candidates, a convex set.

• In LP, a linear criterion is used to choose one of them.

• In other fields, such as compressed sensing, other criterions are used.

• Today we start studying some simple properties of the set {x ∈ Rn|Ax = b}.
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Linear Equations

• Linear Equation: Ax = b, m equations.

a11x1 + a12x2 + · · · + a1nxn = b1,
... ...

am1x1 + am2x2 + · · · + amnxn = bm.

• Writing A = [a1, · · · , an] we have n columns ∈ Rm.

• Add now b: Ab = [A, b] ∈ Rm×n+1.

• remember: a solution to Ax = b is a vector x such that

n∑

i=1

xiai = b,

that is the b and a’s should be linearly dependent (l.d.) for everything to
work.
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Linear Equations

Two cases (note that Rank(A) cannot be > Rank(Ab))

• (i) Rank(A) < Rank(Ab); b and a’s are linearly independent (l.i.). no

solution.

• (ii) Rank(A) = Rank(Ab) = k; every column of Ab, b in particular, can be
expressed as a linear combination of k other columns of the matrix
ai1, · · · , aik. Namely, ∃x such that

k∑

j=1

xijaij = b.

In practice

• if m = n = k, then there is a unique solution: x = A−1b;

• Usually Rank(A) = k ≤ m < n and we have a plenty of solutions;

• We assume from now on that Rank(A) = Rank(Ab) = m.
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Linear Equation Solutions

• if x1 and x2 are two different solutions, then ∀λ ∈ R, λx1 + (1− λ)x2 is a
solution.

• Rank(A) = m. There are m independent columns. Suppose we reorder them
so that a1, · · · , am are linearly independent.

• Then

A =







a11 a12 · · · a1m

a21 a22 · · · a2m
... ... ...

am1 am2 · · · amm

∣
∣
∣

a1m+1 a1m+2 · · · a1n

a2m+1 a2m+2 · · · a2n
... ... ...

amm+1 amm+2 · · · amn







= [B,R]

• B is m×m square, R is m× (n−m) rectangular.
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Linear Equation Solutions

• suppose we divide x =

[
xB

xβ

]

where xB ∈ Rm and xβ ∈ Rm−n

• If Ax = b then BxB + Rxβ = b. Since B is non-singular, we have

xB = B−1(b−Rxβ),

which shows that we can assign arbitrary values to xβ and obtain different
points x such that Ax = b.

• Solutions are parameterized by xβ... a bit problematic since R is the
“discarded” part.

• We choose xβ = 0 and focus on the choice of B.
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Basic Solutions
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Basic Solutions

Definition 1. Consider Ax = b and suppose Rank(A) = m < n. Let
I = (i1, · · · , im) be a list of indexes corresponding to m linearly
independent columns taken among the n columns of A.

• We call the m variables xi1,xi2, · · · ,xim of x its basic variables,

• the other variables are called non-basic.

If x is a vector such that Ax = b and all its non-basic variables are equal
to 0 then x is a basic solution.
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Basic Solutions

• When reordering variables as in the previous slide, and defining
B = [ai1, · · · , aim] we can set xβ = 0. Then xB = B−1b and

x =

[
xB

0

]

,

and we have a basic solution.

• Sidenote: a basic feasible solution to an LP Equation (4) is such that x is
basic and x ≥ 0.
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Basic Solutions

• More generally, let
BI = [ai1, · · · , aim],

RO = [ao1, · · · , aom−n],

where O = {1, · · · , n} \ I = (o1, · · · , om−n) is the complementary of I in
{1, · · · , n} in increasing order.

• I contains the indexes of vectors in the basis, O contains the indexes of vectors
outside the basis.

• Equivalently set xI =

[
xi1...
xim

]

,xO =

[
xo1...

xon−m

]

.

• Ax = BIxI + ROxO
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Basic Solutions

The two things to remember so far:

• A list I of m independent columns ↔ One basic solution x, with
xI = B−1

I b and xO = 0

• We are not interested in all basic solutions, only a subset: basic feasible
solutions.
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Basic Solutions: Degeneracy

Definition 2. A basic solution to Ax = b is degenerate if one or more of
the m basic variables is equal to zero.

• For a basic solution, xO is always 0. On the other hand, we do not expect
elements of xI to be zero.

• This is degeneracy which appears whenever there is one or more components
of xI which are zero.
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Basic Solutions: Example

• Consider Ax = b where

A =

[
1 2 1 0 3
0 1 2 1 3

]

,b =

[
1
1

]

.

We start by choosing I:

• I = (1, 2). BI = [a1, a2] = [ 1 2
0 1 ]→ xI = [−1

1 ] ;x =

[
−1
1
0
0
0

]

is basic.

• I = (1, 4). BI = [a1, a4] = [ 1 0
0 1 ]→ xI = [ 1

1 ] ;x =

[
1
0
0
1
0

]

is basic.

• I = (2, 5). BI = [a2, a5] = [ 1 3
0 3 ]→ xI =

[
0
1
3

]

;x =





0
0
0
0
1
3



 is degenerate basic

note that a5 and b are colinear...
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Non-degeneracy

Theorem 1. A necessary and sufficient condition for the existence and
non-degeneracy of all basic solutions of Ax = b is the linear independence
of every set of m columns of Ab, the augmented matrix.

Proof. • Proof strategy: ⇒ the existence of all possible basic solutions is
already a good sign: all families of m columns of A are l.i. What we need is
show that m− 1 columns of A plus b are also l.i.

• ⇐ if all m columns choices are independent, basic solutions exist, and are
non-degenerate because b is l.i. with any combination of m− 1 columns.
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Non-degeneracy

Proof. • ⇒: Let I = (i1, · · · , im) a family of indexes.

◦ The basic solution associated with I exists and is non-degenerate. b 6= 0
◦ Hence by definition {ai1, · · · ,aim} is l.i. and b =

∑m
k=1 xkaik.

◦ For a given r, suppose {ai1, · · · , air−1, air+1, · · · ,aim,b} is l.d.
◦ Then ∃(α1, · · · , αr−1, αr+1, αm) and β such that

βb +
m∑

k=1,k 6=r

αkaik = 0.

Note that necessarily β 6= 0 (otherwise {ai1, · · · , air−1, air+1, · · · , aim} is l.d)
◦ Contradiction: degenerate solution for I, (−α1

β , · · · ,−
αr−1

β , 0,−
αr+1

β ,−αm
β )

• ⇐: Let I = (i1, · · · , im) a family of indexes.

◦ A basic solution exists,
∑m

k=1 xkaik = b
◦ Suppose it is degenerate, i.e. xr = 0. Then

∑m
k=1,k 6=r xkaik − b = 0

◦ Contradiction: {ai1, · · · ,air−1,air+1, · · · ,aim,b}, of size m, is l.d.
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Non-degeneracy

Theorem 2. Given a basic solution to Ax = b with basic variables xi1, · · · , xim,
a necessary and sufficient condition for the solution to be non-degenerate is
the l.i. of b with every subset of m− 1 columns of {ai1, · · · , aim}

• In our previous example,

A =

[
1 2 1 0 3
0 1 2 1 3

]

,b =

[
1
1

]

, m = 2.

• Hence if I = (2, 5), [b,a2] and [b, a5] should be of rank 2 for the solution not
to be degenerate. Yet [b, a5] = [ 1 3

1 3 ] is clearly of rank 1.
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Hyperplanes
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Hyperplane

Definition 3. A hyperplane in Rn is defined by a vector c 6= 0 ∈ Rn and a
scalar z ∈ R as the set {x ∈ Rn|cTx = z}.

z = 0,

• A hyperplane Hc,z contains 0 iff z = 0.

• In that case Hc,0 is a vector subspace and dim(Hc,0) = n− 1

z 6= 0,

• For x1,x2 easy to check that cT (x1 − x2) = 0. In other words c is orthogonal
to vectors lying in the hyperplane.

• c is called the normal of the hyperplane
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Affine Subspace

Definition 4. Let V be a vector space and let L be a vector subspace of V .
Then given x ∈ V , the translation T = L + x = {u + x,u ∈ L} is called an
affine subspace of V .

• the dimension of T is the dimension of L.

• T is parallel to L.
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Affine Hyperplane

• For c 6= 0, Hc,0 is a Vector subspace of Rn of dimension n− 1.

• When z 6= 0, Hc,z is an affine hyperplane: it’s easy to see that
Hc,z = Hc,0 + z

‖c‖2c

c

Hc,0

Hc,z

z
‖c‖2

c

0
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A bit of Topology and Halfspaces
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A bit of topology: open and closed balls

• The n dimensional open ball centered at x0 with radius r is defined as

Br(x0) = {x ∈ Rn s.t. |x− x0| < r},

• its closure
Br(x0) = {x ∈ Rn s.t. |x− x0| ≤ r},

x1

x2r1

r2

Br1(x1)

Br2(x2)
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A bit of topology: boundary

• Let S ⊂ Rn. A point x is a boundary point of S if every open ball centered
at x contains both a point in S and a point in Rn \ S.

• A boundary point can either be in S or not in S.

x1
C

x2

x3

• x1 is a boundary point, x2 and x3 are not.
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A bit of topology: open and closed sets

• The set of all boundary points of S is the boundary ∂S of S.

• A set is closed if ∂S ⊂ S. A set is open if Rn \ S is closed.

• Note that there are sets that are neither open nor close.

• The closure S of a set S is S ∪ ∂S

• The interior So of a set S is S \ ∂S

• A set S is closed iff S = S and open iff S = So.
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Halfspaces

• For a hyperplane H, its complement in Rn is the union of two sets called open
halfspaces;

Rn \H = H+ ∪H−

where
H+ = {x ∈ Rm|cTx > z}
H− = {x ∈ Rm|cTx < z}

• H+ = H+ ∪H and H− = H− ∪H are closed halfspaces.

H−H−H

c
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Convex sets & extreme points
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Definition

• Convexity starts by defining segments

y

x

λx + (1 − λ)y

[x,y] = λx + (1− λ)y, λ ∈ [0, 1]

.

Definition 5. A set C is said to be convex if for all x and y in C the
segment [x,y] ⊂ C.
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Examples

• Rn is trivially convex and so is any vector subspace V of Rn.

• For Rn ∋ c 6= 0 and z ∈ R, Hc,z is convex

• The halfspaces H+
c,z and H−

c,z are open convex sets, their respective closures
are closed convex sets.

• Let x1,x2 ∈ Br(x0), λ ∈ [0, 1] then

|(λx1 +(1−λ)x2)−x0| = |λ(x1−x0)+(1−λ)(x2−x0)| < λr+(1−λ)r = r.

hence Br(x0) and similarly Br(x0) are convex
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Extreme points

Definition 6. A point x of a convex set C is said to be an extreme point of
C if

(
∃x1,x2 ∈ C | x = x1+x2

2

)
⇒ x1 = x2 = x.

• intuitively x is not part of an open segment of two other points x1,x2.

• other definitions use 0 < λ < 1,x = λx1 + (1− λ)x2 but the one above is
equivalent & easier to remember.

C

x
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Extreme points

• an extreme point is a boundary point but the converse is not true in general.

x2

x1

x3
x4 C

• x1,x2,x3,x4 are all boundary points. Only x2 and x3 are extreme. x1 for
instance can be written as λx2 + (1− λ)x4
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Hyperplanes and Convexity: Isolation and

Support
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Boundaries of Hyperplanes and Halfspaces

• Hyperplanes are closed

◦ We can actually show that Hc,z ⊂ ∂Hc,z, namely any point of Hc,z is a
boundary point:
⊲ let x ∈ Hc,z and Br(x) an open ball centered in x.
⊲ let y1 = x + r

2|c|2
c. Then cTy1 = z + r

2 > z hence y1 /∈ Hc,z but

y1 ∈ Br(x),
⊲ let z ∈ Hc,z, z 6= x, and y2 = x + r x−z

2|x−z|, hence y2 ∈ Hc,z and

y2 ∈ Br(x).
◦ We could also have raised the fact that for xi a converging sequence of Hc,z

we have that cT limi→∞ xi = limi→∞ cTxi = z.

• The boundary of a halfspace is the corresponding hyperplane, i.e.

∂H− = ∂H+ = H.

• The interior Ho of a hyperplane is empty as Ho = H \ ∂H.
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Hyperplanes, halfspaces and convexity

Lemma 1. (i) All hyperplanes are convex;

(ii) The halfspaces H+
c,z,H

−
c,z, H

+
c,z,H

−
c,z are convex;

(iii) Any intersection of convex sets is convex;
(iv) The set of all feasible solutions of a linear program is a convex set.

Proof. (i) cT (λx1 + (1− λ)x2) = (λ + (1− λ)) z = z.
(ii) same as above by replacing equality by inequalities.
(iii) Let C = ∩i∈ICi. Let x1,x2 ∈ C. Then for
λ ∈ [0, 1], ∀i ∈ I, (λx1 + (1− λ)x2) ∈ Ci, hence (λx1 + (1− λ)x2) ∈ C.
(iv) The set of feasible points to an LP problem is the intersection of hyperplanes
rT

i x = bi and halfspaces rT
j x≥

≤ bj and is hence convex by (iii).
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Isolation

Definition 7. Let A ⊂ Rn be a set and let H ⊂ Rn be a affine hyperplane. H is
said to isolate A if A is contained in one of the closed subspaces H− or H+.
H strictly isolates A if A is contained in one of the open halfspaces H− or
H+.

A
c

H

H−

H+
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Isolation Theorem

Theorem 3. Let C be a closed convex set and y a point not in C. Then
there is a hyperplane Hc,z that contains y and such that C ⊂ H−

c,z or C ⊂ H+
c,z

• (Bar02,II.1.6) has a more general result when C is open. The proof is longer
and we won’t use it.

• Proof strategy: build a suitable hyperplane and show it satisfies the property.
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Isolation Theorem : Proof

Proof. • Define the hyperplane:

◦ Let δ = infx∈C |x− y| > 0.
◦ The continuous function x→ |x− y| on the closed set B2δ(y) achieves its

minimum at a point x0 ∈ C.
◦ One can prove that necessarily x ∈ ∂C.
◦ Let c = x0 − y, z = cTy and consider Hc,z. Clearly y ∈ Hc,z.

H−
c,z

C

yc

Hc,z

x0

H+
c,z
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Isolation Theorem : Proof

• Show that C ⊂ H+
c,z:

◦ Let x ∈ C. Since x0 ∈ C, for λ ∈ [0, 1],

λx + (1− λ)x0 = x0 + λ(x− x0) ∈ C.

◦ By definition of x0, | (x0 + λ(x− x0))− y|2 ≥ |x0 − y|2,
◦ thus by definition of c = x0 − y,

|λ(x− x0) + c|2 ≥ |c|2,

◦ thus 2λcT (x− x0) + λ2|x− x0|
2 ≥ 0,

◦ Letting λ→ 0 we have that cT (x− x0) ≥ 0, hence

cTx ≥ cTx0 = cT (y + c) = z + |c|2 = z + δ2 > z
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Supporting Hyperplane

Definition 8. Let y be a boundary point of a convex set C. A hyperplane
Hc,z is called a supporting hyperplane of C at y if y ∈ Hc,z and either

C ⊆ H+
c,z or C ⊆ H−

c,z.

Theorem 4. If y is a boundary point of a closed convex set C then there is at
least one supporting hyperplane at y.

• Proof strategy: use the isolation theorem on a sequence of points that
converge to a boundary point.
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Supporting Hyperplane : Proof

Proof. Since y ∈ ∂C, ∀k ∈ N, ∃yk ∈ B1
k
(y) such that yk /∈ C. (yk) is thus a

sequence of Rn \ C that converges to y. Let ck be the sequence of corresponding
normal vectors constructed according to the proof of Theorem 3, normalized so
that |ck| = 1 and C is in the halfspace {x | cT

k x ≥ cT
k yk}. Since (ck) is a

bounded sequence in a compact space, there exists a subsequence ckj
that

converges to a point c. Let z = cTy. For any x ∈ C,

cTx = lim
j→∞

cT
kj

x ≥ lim
j→∞

cT
kj

ykj
= cTy = z,

thus C ⊂ H+
c,z
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Bounded from below

Definition 9. A set A ⊂ Rn is said to be bounded from below if for all
1 ≤ j ≤ n,

inf
{
xj |A ∋ x = (x1, . . . ,xn)T

}
> −∞.

• Any bounded set is bounded from below

• More importantly, Rn
+ = {x|x ≥ 0} is bounded from below.

• the LP set of solutions {x ∈ Rn | Ax = b,x ≥ 0} is convex & bounded
from below.
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Supporting Hyperplane and Extreme Points

Theorem 5. Let C be a closed convex set which is bounded from below. Then
every supporting hyperplane of C contains an extreme point of C .

• Proof strategy: Show that for a supporting hyperplane H, an extreme point
of the convex subset H ∩ C is an extreme point of C. Find an extreme point
of H ∩ C.
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Supporting Hyperplane and Extreme Points: Proof

Proof. • Let Hc,z be a supporting hyperplane at y ∈ C. Let us write
A = Hc,z ∩ C which is non-empty since it contains y.

• an extreme point of A is an extreme point of C

◦ suppose x ∈ A, that is cTx = z, is not an ext. point of C, i.e
∃x1 6= x2 ∈ C such that x = x1+x2

2 .
◦ If x1 /∈ A or x2 /∈ A then 1

2c
T (x1 + x2) > z = cTx hence x1,x2 ∈ A and

thus x is not an ext. point of A.
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Supporting Hyperplane and Extreme Points: Proof

• look now for an extreme point of A. We use mainly A ⊂ Hc,z ∩ Rm
+

◦ if A is a singleton, namely A = {y}, then y is obviously extreme.
◦ if not, narrow down recursively:

⊲ A1 = argmin{a1 | a ∈ A}. Since A ⊂ C and C is bounded from below the
closed set A1 is well defined as the set of points which achieve this minimum.

⊲ If A1 is still not a singleton, we narrow further:

Aj = argmin{aj | a ∈ Aj−1}.

⊲ Since A ⊂ Rn, this process must stop after k ≤ n iterations (after n
iterations the n variables of points in An are uniquely defined). We have
Ak ⊆ Ak−1 ⊆ A1 ⊆ A and write Ak =

{
ak
}
.

◦ Suppose ∃x1 6= x2 ∈ A such that ak = x1+x2

2 . In particular ∀i ≤ k,ak
i =

x1
i +x2

i
2 .

◦ Since ak
1 is an infimum, x1

i = x2
i = ak

1 and x1,x2 ∈ A1.
◦ By the same argument applied recursively we have that x1,x2 ∈ Aj and

finally Ak which by construction is {ak}, hence x1 = x2 = ak, a contradiction,
and ak is our extreme point.
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Convex Hulls & Carathéodory’s Theorem
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Convex combinations

Definition 10. Let {x1,x2, · · · ,xk} be a set of points. Let α1, · · · , αk be a

family of nonnegative weights such that
∑k

1 αi = 1. Then x =
∑k

1 αixi is
called a convex combination of the points x1,x2, · · · ,xk.

x

x2
y

x3

x1

Let’s illustrate this statement with a point x in a triangle (x1,x2,x3).

• Let y be the intersection of (x1,x) with [x2,x3]. y = px2 + qx3 with

p = |x2−y|
|x3−x2|

and q = |x3−y|
|x3−x2|

.

• On the other hand, x = lx1 + ky with l = |x1−x|
|x1−y| and k = |y−x|

|x1−y|.

• Finally x = lx1 + pkx2 + qkx3, and l + pk + qk = 1.
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Convex hull

Definition 11. The convex hull 〈A〉 of a set A is the minimal convex set that
contains A.

Lemma 2. (i) if A 6= ∅ then 〈A〉 6= ∅
(ii) if A ⊂ B then 〈A〉 ⊂ 〈B〉
(iii) 〈A〉 is the intersection of all convex sets that contain A.
(iv) if A is convex then 〈A〉 = A
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Convex hull ⇔ all convex combinations

Theorem 6. The convex hull of a set of points {x1, · · · ,xk} is the set of all
convex combinations of x1, · · · ,xk.

Proof. • Let A = {x |x =
∑k

1 αixi, αi ≥ 0,
∑k

1 αi = 1}; B = 〈{x1, · · · ,xk}〉

◦ It’s easy to prove that A is convex: Let x =
∑k

1 αixi and y =
∑k

1 βixi be
two points of A. Then λx + (1− λ)y can be written as

k∑

i=1

(λαi + (1− λ)βi)xi ∈ A

◦ B ⊆ A : A is convex and contains each point xi since

xi =
k∑

j=1

δijxj.
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Convex hull ⇔ all convex combinations

◦ A ⊆ B : by induction on k. if k = 1 then B1 = 〈{x1}〉 and A1 = {x1}. By
Lemma 2 A1 ⊆ B1. Suppose that the claim holds for any family of k − 1
points, i.e. Ak−1 ⊆ Bk−1. Let now x ∈ Ak such that

x =
k∑

i=1

αixi.

If x = xk then trivially x ∈ Bk. If x 6= xk then αk 6= 1 and we have that

∑k−1
i=1 αi

1− αk
= 1.

Consider y =
∑k−1

i=1
αi

1−αk
xi. y ∈ Bk−1 by the induction hypothesis. Since

{x1, · · · ,xk−1} ⊂ {x1, · · · ,xk}, Bk−1 ⊆ Bk by Lemma2. Since Bk is
convex and both y,xk ∈ Bk, so is x = (1− αk)y + αkxk.
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Polytope, Polyhedrons

Definition 12. The convex hull of a finite set of points in Rn is called a
polytope.

Let r1, · · · , rm be vectors from Rn and b1, · · · , bm be numbers. The set

P =
{
x ∈ Rn | rT

i x ≤ bi , i = 1, · · · , n
}

is called a polyhedron.

• A few comments:

◦ bounded polyhedron ⇔ polytope: TBP Weyl-Minkowski theorem.
◦ polytopes are generated by a finite set of points. Br(x) is not a polytope.
◦ a polyhedron is exactly the set of feasible solutions of an LP.
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Carathéodory’s Theorem

• Start with the example of C = {x1,x2,x3,x4,x5} ⊂ R2 and its hull 〈C〉.

x1

x3

x4

y3

y2

x5

y1
C

〈C〉
=⇒

x2
x4

x3

x5

x2

x1

◦ y1 can be written as a convex combination of x1,x2,x3 (or x1,x2,x5);
◦ y2 can be written as a convex combination of x1,x3,x4;
◦ y3 can be written as a convex combination of x1,x4,x5;

• For a set C of 5 points in R2 there seems to be always a way to write a point
y ∈ 〈C〉 as the convex combination of 2 + 1 = 3 of such points.

• Is this result still valid for general hulls 〈S〉 (not necessarily polytopes but also
balls etc..) and higher dimensions?
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Carathéodory’s Theorem

Theorem 7. Let S ⊂ Rn. Then every point x of 〈S〉 can be represented as a
convex combination of n + 1 points from S,

x = α1x1 + · · ·+ αn+1xn+1,
n+1∑

i=1

αi = 1, αi ≥ 0.

alternative formulation:

〈S〉 =
⋃

C⊂S,card(C)=n+1

〈C〉.

• Proof strategy: show that when a point is written as a combination of m
points and m > n + 1, it is possible to write it as a combination of m− 1
points by solving a homogeneous linear equation of n + 1 equations in Rm.
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Proof.

• (⊃) is direct.

• (⊂) any x ∈ 〈S〉 can be written as a convex combination of p points,
x = α1x1 + · · ·αpxp. We can assume αi > 0 for i = 1, · · · , p.

◦ If p < n + 1 then we add terms 0xp+1 + 0xp+2 + · · · to get n + 1 terms.
◦ If p > n + 1, we build a new combination with one term less:

⊲ let A =

[
x1 x2 · · · xm

1 1 · · · 1

]

∈ Rn+1×p.

⊲ The key here is that since p > n + 1 there exists a solution
η ∈ Rm 6= 0 to Aη = 0.

⊲ By the last row of A, η1 + η2 + · · ·+ ηm = 0, thus η has both + and -
coordinates.

⊲ Let τ = min{αi
ηi

, ηi > 0} =
αi0
ηi0

.

⊲ Let mα̃i = αi − τηi. Hence α̃i ≥ 0 and α̃i0 = 0.

⊲

α̃1 + · · ·+ α̃p = (α1 + · · ·+ αp)− τ(η1 + · · ·+ ηp) = 1,
α̃1x1 + · · ·+ α̃pxp = α1x1 + · · ·+ αpxp − τ(η1x1 + · · ·+ ηpxp) = x.

⊲ Thus x =
∑

i 6=i0
αixi of mp− 1 points {xi, i 6= i0}.

⊲ Iterate this procedure until x is a convex combin. of n + 1 points of S.
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Basic Solutions, Extreme Points and

Optima of Linear Programs
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Terminology

• A linear program is a mathematical program with linear objectives and
linear constraints.

• A linear program in canonical form is the program

maximize cTx
subject to Ax ≤ b,

x ≥ 0.

b ≥ 0⇒ feasible canonical form. Initial feasible point: x = 0.

• In broad terms:

◦ In resource allocation problems canonical is more adapted,
◦ in flow problems standard is usually more natural.

• However our algorithms work in standard form.
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Terminology

• A linear program in standard form is the program

maximize cTx (5)

subject to Ax = b, (6)

x ≥ 0. (7)

• Easy to go from one to the other but dimensions of x, c, A,b may change.

• Ultimately, all LP can be written in standard form.
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Terminology
Definition 13. (i) A feasible solution to an LP in standard form is a

vector x that satisfies constraints (6)(7).

(ii) The set of all feasible solutions is called the feasible set or feasible
region.

(iii) A feasible solution to an LP is an optimal solution if it maximizes the
objective function of the LP.

(iv) A feasible solution to an LP in standard form is said to be a basic
feasible solution (BFS) if it is a basic solution with respect to
Equation (6).

(v) If a basic solution is non-degenerate, we call it a non-degenerate
basic feasible solution.

• note that an optimal solution may not be unique, but the optimal value of the
problem is.

• Anytime “basic” is quoted, we are implicitly using the standard form.
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∃ feasible solutions ⇒ ∃ basic feasible solutions

Theorem 8. The feasible region to an LP is convex, closed, bounded from
below.

Theorem 9. If there is a feasible solution to a LP in standard form, then
there is a basic feasible solution.

• Proof idea:

◦ if x is such that
∑

i∈I xiai = b and where card(I) > m then we show we
can have an expansion of x with a smaller family I ′.
◦ Eventually by making I smaller we turn it into a basis I.
◦ Some of the simplex’s algorithm ideas are contained in the proof.

• Remarks:

◦ Finding an initial feasible solution might be a problem to solve by itself.
◦ We assume in the next slides we have one. More on this later.
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Proof

Assume x is a solution with p ≤ n positive variables. Up to a reordering and for
convenience, assume that such variables are the p first variables, hence
x = (x1, · · · , xp, 0, · · · , 0) and

∑p
i=1 xiai = b.

• if {ai}
p
i=1 is linearly independent, then necessarily p ≤ m. If p = m then the

solution is basic. If p < m it is basic and degenerate.

• Suppose {ai}
p
i=1 is linearly dependent.

◦ Assume all ai, i ≤ p are non-zero. If there is a zero vector we can remove it
from the start. Hence we have

∑p
i=1 αiai = 0 with α 6= 0.

◦ If αr 6= 0, then ar =
∑p

j=1,j 6=r

(

−
αj

αr

)

aj, which, when substituted in x’s

expansion,
p
∑

j=1,j 6=r

(

xj − xr
αj

αr

)

aj = b,

with has now no more than p− 1 non-zero variables.
◦ non-zero is not enough, since we need feasibility.
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Proof
◦ We need to choose r carefully such that

xj − xr
αj

αr
≥ 0, j = 1, 2, · · · , p. (8)

◦ For indexes j such that αj = 0 condition (8) is ok. For those αj 6= 0, (8)
becomes

xj

αj
−

xr

αr
≥ 0 for αj > 0, (9)

xj

αj
−

xr

αr
≤ 0 for αj < 0, (10)

◦ Let’s select r among the indexes {k |αk > 0} is positive. (10) always holds,

and we set r = argmink

{
xk
αk
|αk > 0

}

for (9) to hold.

• Finally: when p > m, we can show that there exists a feasible solution which
can be written as a combination of p− 1 vectors ai ⇒ only need to reiterate.

• Remark we could have chosen r among {k |αk < 0}.(9) would always hold,

and we need to choose r = argmink

{
xk
αk
|αk < 0

}

for (10). both cases are

valid. Of course, different choices will give different expansions.
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Basic feasible solutions of an LP ⊂ Extreme points of the

feasible region

Theorem 10. The basic feasible solutions of an LP in standard form are
extreme points of the corresponding feasible region.

• Proof idea: basic solutions means that xI is uniquely defined by BI’s
invertibility, that is xI is uniquely defined as B−1

I b. This helps to prove that x
is extreme.
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Proof

• Suppose x is a basic feasible solution, that is with proper reordering x has the
form x = [ xB

0 ] with xB = B−1b and B ∈ Rm×m an invertible matrix made of
l.i. columns of A.

• Suppose ∃x1,x2 s.t. x = x1+x2
2 .

• Write x1 = [ u1
v1 ] ,x2 = [ u2

v2 ]

• since v1,v2 ≥ 0 and v1+v2
2 = 0 necessarily v1 = v2 = 0.

• Since x1 and x2 are feasible, Bu1 = b and Bu2 = b hence
u1 = u2 = B−1b = xB which proves that x1 = x2 = x.
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Basic feasible solutions of an LP ⊃ Extreme points of the

feasible region

Theorem 11. The extreme points of the feasible region of an LP in standard
form are basic feasible solutions of the LP.

• Proof idea: Similar to the previous proof, the fact that a point is extreme
helps show that it only has m or less non-zero components.
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Proof

Let x be an extreme point of the feasible region of an LP, with r ≤ n zero
variables. We reorder variables such that xi, i ≤ r are positive and xi = 0 for
r + 1 ≤ i ≤ n.

• As usual
∑r

i=1 xiai = b.

• Let us prove by contradiction that {ai}
r
i=1 are linearly independent.

• if not, ∃(α1, · · · , αr) 6= 0 such that
∑r

i=1 αiai = 0. We show how to use the
family α to create two distinct feasible points x1 and x2 such that x is their
center.

• Let 0 < ε < minαi 6=0
xi
|αi|

. Then xi ± εαi > 0 for i ≤ r and set x1 = x + εα

and x2 = x− εα with α = (α1, · · · , αr, 0, · · · , 0) ∈ Rn.

• x1,x2 are feasible: by definition of ε,x1,x2 ≥ 0. Furthermore,
Ax1 = Ax2 = Ax± εAα = b since Aα = 0

• We have x1+x2
2 = x which is a contradiction.
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∃ extreme point in the set of optimal solutions.

Theorem 12. The optimal solution to an LP in standard form occurs at an
extreme point of the feasible region.

Proof. Suppose the optimal value of an LP is z⋆ and suppose the objective is to
maximize cTx.

• Any optimal solution x is necessarily in the boundary of the feasible region. If
not, ∃ε > 0 such that x + εc is still feasible, and cT (x + εc) = z⋆ + ε|c|2 > z⋆.

• The set of solutions is the intersection of Hc,z⋆ and the feasible region C which
is convex & bounded from below. Hc,z⋆ is a supporting plane of C on the
boundary point x, thus Hc,z⋆ contains an extreme point (Thm. 3,lecture 3).

... but some solutions that are not extreme points might be optimal.
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Wrap-up

(i) a feasible solution exists ⇒ we know how to turn it into a basic feasible
solution;

(ii) basic feasible solutions ⇔ extreme points of the feasible region;

(iii) Optimum of an LP occurs at an extreme point of the feasible region;
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That’s it for basic convex analysis and LP’s
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Major Recap

• A Linear Program is a program with linear constraints and objectives.

• Equivalent formulations for LP’s: canonical (inequalities) and standard
(equalities) form.

• Both have feasible convex sets that are bounded from below.

• Simplex Algorithm to solve LP’s only works in standard form.

• In standard form, the optimum occurs on an extreme point of the feasible
set.

• All extreme points are basic feasible solutions.

• basic feasible solutions are of the type xI = B−1
I b for a subset I of m

coordinates in n, zero elsewhere.

• Looking for an optimum? only need to check extreme points ⇔ BFS.

• Looking for an optimum? ∃ a basis I which realizes that optimum.
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The essence of The Simplex Algorithm:

Improving the Objective From a Basic

Feasible Solution
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Improving a BFS

• Remember that a standard form LP is

maximize cTx
subject to Ax = b,

x ≥ 0.

• Given I = (i1, · · · , im), the base BI = [ai1,ai2, · · · ,aim], suppose we have a
basic feasible solution where xI = B−1b, that is an extreme point of the
feasible polyhedron.

• We know that the optimum is reached on an optimal I⋆.

• There is finite number of families {I|BI is invertible, xI is feasible}.

• How can we find a family I′ such that xI′ is still feasible and cT
I′xI′ > cT

I xI?.

• The simplex algorithm provides an answer, where an index of I is replaced by
a new integer in O = [1, · · · , n] \ I.

• Note that we only have methods that change one index at a time.
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The simplex does three things

Given a BFS I

• shows how to select a base I′ by changing one index in I (an index goes out,
an index goes in)

• check how to select an improved basic solution by telling which index to
include.

• check how we can select a improved basic feasible solution linked to I′ by
telling which index to remove.

In practice, given a BFS I, the 3 steps of the simplex

1. Look for an index that would improve the objective.

2. check we can improve and obtain a valid base I′ by incorporating that index
and checking there is at least one we can remove.

3. basic & improve objective accomplished, ensure now xI′ is feasible by
choosing the index we remove.
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Initial Setting

• Let I = (i1, · · · , im), the base BI = [ai1,ai2, · · · ,aim] and suppose we have a
basic feasible solution xI = B−1

I b.

• The column vectors of B are l.i., and can thus be used as a basis of Rm.
Thus ∃Y ∈ Rm×n | A = BY , namely Y = B−1A, the coordinates of all
vectors of A in base B.

m







n
︷ ︸︸ ︷



... ... · · · · · · ...
a1 a2 · · · · · · an
... ... · · · · · · ...



 =

m
︷ ︸︸ ︷



... ... ·· ...
ai1 ai2 ·· aim
... ... ·· ...





n
︷ ︸︸ ︷



... ... · · · · · · ...
y1 y2 · · · · · · yn
... ... · · · · · · ...





or individually aj =
∑m

k=1 yk,j aik. We write yj =

[
y1,j
...

ym,j

]

and aj = Byj.

• Hence yj = B−1aj and B−1 is a change of coordinate matrix from the
canonical base to the base in B.
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Change an element in the basis and still have a basic solution

• Change an index in I? everything depends on

Y =





... ... · · · · · · ...
y1 y2 · · · · · · yn
... ... · · · · · · ...



 ∈ Rm×n

• Claim: if yr,e 6= 0 for two indices, r ≤ m, e ≤ n and not in I,

◦ r for remove, e for enter,
◦ one can substitute the rth column of B,air, for the eth column of A, ae.
◦ That is we can select the basis Î = (I \ ir) ∪ e and we are sure that

⊲ BÎ is invertible,
⊲ xÎ is a basic solution.
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basic solution

• Proof if yr,e 6= 0,ae = yr,e air +
∑

k 6=r

yk,j aik ⇒ air = 1
yr,e

ae −
∑

k 6=r

yk,j

yr,e
aik.

Thus

BIxI =

m∑

k=1

xikaik = xirair +

m∑

k=1,k 6=r

xikaik = b

is replaced by
xir

yr,e

ae +
m∑

k=1

(

xik − xir

yk,e

yr,e

)

aik = b

and we have a new solution x̂ with Î = (i1, · · · , ir−1, e, ir+1, · · · , im) and

x̂ik = xik − xir

yk,e

yr,e
for 1 ≤ k ≤ m, (k 6= r)

x̂e =
xir

yr,e

note that x̂ir = 0 and we still have a basic solution.
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basic & better: restriction on e

• The objective value, cT
I xI becomes cT

Î
x̂Î with ĉik = cik for k 6= r and ĉe = ce.

Thus
ẑ = cT

Î
x̂Î =

∑

k 6=r cikx̂ik + cex̂e

=
∑

k 6=r cik

(

xik − xir

yk,e

yr,e

)

+ ce
xir

yr,e

=
∑

k cikxik −
xir

yr,e

∑

k cikyk,e + ce
xir

yr,e

= z −
xir

yr,e
cT
I ye + ce

xir

yr,e

= z +
xir

yr,e
(ce − ze),

where ze = cT
I ye = cT

I B−1ae.

• ẑ > z if yr,e > 0 and ce − ze > 0, hence we choose a column e such that

◦ ce − ze > 0
◦ there exists yi,e > 0

• Important Remark if xI is non-degenerate, xir > 0 and hence ẑ > z.

• Much better than ẑ ≥ z as it implies convergence.
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basic & better & feasible: restriction on r

• We require x̂i ≥ 0 for all i. In particular, for basic variables we need that

{

x̂ik = xik − xir

yk,e

yr,e
≥ 0 for 1 ≤ k ≤ m (k 6= r)

x̂e =
xir

yr,e
≥ 0

• Let r be chosen such that

xir

yr,e
= min

k=1,..,m

{
xik

yk,e
| yk,e > 0

}
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From one basic feasible solution to a better one

Theorem 13. Let x be a basic feasible solution (BFS) to a LP with index
set I and objective value z. If there exists e /∈ I, 1 ≤ e ≤ n such that

(i) a reduced cost coefficient ce − ze > 0,

(ii) at least one coordinate of ye is positive, ∃i such that yi,e > 0,

then it is possible to obtain a new BFS by replacing an index in I by e, and
the new value of the objective value ẑ is such that ẑ ≥ z, strictly if xI is
non-degenerate.
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From one basic feasible solution to a better one

• Remark: coefficients ce − ze are called reduced cost coefficients.

• Remark “e /∈ I” is redundant: if e ∈ I, that is ∃k, ik = e then ce − ze = 0.
Indeed, ce − ze = ce − cT

I B−1ae = ce − cT
I eik = ce − ce = 0 where ei is the

ith canonical vector of Rm. Indeed, if Bx = a and a is the kth vector of B
then necessarily x = ek.

• Remember: if k ∈ I then necessarily the reduced cost (ck − zk) is 0.
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Testing for Optimality
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Optimality: ci − zi ≤ 0 for all i

Theorem 14. Let x⋆ be a basic feasible solution (BFS) to a LP with index
set I⋆ and objective value z⋆. If ci − z⋆

i ≤ 0 for all 1 ≤ i ≤ n then x⋆ is
optimal.

• Proof idea: the conditions ci− z⋆
i ≤ 0 allow us to write that

∑
cixi is smaller

than
∑

z⋆
i xi for all x in Rm

+ . Moreover, z⋆
i integrates information about the

base I⋆ and we show that the point that realizes
∑

z⋆
i
xi = cTx is necessarily

x⋆ and thus every cTx is smaller than cTx⋆.
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Proof

• For any feasible solution x we have
∑n

k=1 ckxk ≤
∑n

k=1 z⋆
kxk. Yet,

n∑

k=1

z⋆
kxk =

n∑

k=1

cT
I⋆yk xk =

n∑

k=1





m∑

j=1

cij
yj,k



xk =
m∑

j=1

cij

(
n∑

k=1

yj,kxk

)

• We have found a maxima of cTx with base I⋆...

• The terms uj
def
=
∑n

k=1 yj,k xk are actually equal to x⋆
ij
. Indeed, remember

∑m
j=1 x⋆

ij
aij

= b and that since x is feasible,
∑n

k=1 xkak = b. Yet,

n∑

k=1

xk(BI⋆yk) =

n∑

k=1





m∑

j=1

yk,jaij



xk =

m∑

j=1

(
n∑

k=1

yk,jxk

)

aij
=

m∑

j=1

ujaij
= b.

Hence

z ≤
m∑

j=1

cij
x⋆

ij
= z⋆.
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Testing for Boundedness
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(un)boundedness

• Sometimes programs are trivially unbounded

maximize 1Tx
subject to x ≥ 0.

• Here both the feasible set and the objective on that feasible set are
unbounded.

• Feasible set is bounded ⇒ objective is bounded.

• Feasible set is unbounded, optimum might be bounded or unbounded, no
implication.

• Two different issues.

• Can we check quickly?

VNU June 12-17 122



(un)boundedness of the feasible set and/or of the objective.

Theorem 15. Consider an LP in standard form and a basic feasible index set
I. If there exists an index e /∈ I such that ye ≤ 0 then the feasible region is
unbounded. If moreover for e the reduced cost ce− ze > 0 then there exists a
feasible solution with at most m + 1 nonzero variables and an arbitrary
large objective function.

Proof sketch:

• Take advantage of ye ≤ 0 to modify a BFS b =
∑

xijaij to get a new
nonbasic feasible solution using ae, b =

∑
xijaij − θae + θae. This solution is

arbitrarily large.

• If for that e, ce > ze then it is easy to prove that we can have an arbitrarily
high objective.
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(un)boundedness of the feasible set and/or of the objective.

Proof. • Let I be an index set and xI the corresponding BFS.

• Remember that for any index, e in particular, ae = BIye =
∑m

j=1 yj,eaij .

• Let’s play with ae : b =
∑m

j=1 xijaij − θae + θae.

• b =
∑m

j=1

(
xij − θyj,e

)
aij + θae

• Since yj,e ≤ 0 is negative we have a nonbasic & feasible solution with m + 1
nonzero variables.

• θ can be set arbitrarily large: xI + θae is feasible ⇒ unboundedness.

• If moreover ce > ze then writing ẑ for the objective of the point above,

ẑ =
∑m

j=1(xij − θyj,e)cij + θce,

=
∑m

j=1 xijcij − θ
∑m

j=1 yj,ecij + θce,

= cT
I xI − θcT

I ye + θce = z − θze + θce,
= z + θ(ce − ze).
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A simple example
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An example

• Let’s consider the following example:

A =

[
1 2 3 4
1 0 0 1

]

, c =

[
2
5
6
8

]

,b = [ 5
2 ] .

• Let us choose the starting I as (1, 4). BI = [ 1 4
1 1 ], and we check easily that

xI = [ 1
1 ] which is feasible (lucky here) with objective

z = cT
I xI = [ 2 8 ] [ 1

1 ] = 10.
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An example: 4 out, 2 in

• Here B−1
I = 1

3

[
−1 4
1 −1

]
the yij are given by B−1

I A =

[
1 −2

3 −1 0
0 2

3 1 1

]

,

namely

y1 = [ 1
0 ] ,y2 =

[
−

2
3

2
3

]

,y3 = [−1
1 ] ,y4 = [ 0

1 ]

• Hence, z2 = [ 2 8 ]

[
−

2
3

2
3

]

= 4, z3 = [ 2 8 ] [−1
1 ] = 6.

• Because I = [1, 4], we know z1 − c1 = z4 − c4 = 0.

• We have c2 − z2 = 1; c3 − z3 = 0 so only one choice for e, that is 2.

• We check y2 and see that y22 is the only positive entry. Hence we remove the
second index of I, i2 = 4. I′ = (1, 2) and BI′ = [ 1 2

1 0 ]

• The corresponding basic solution is xI′ =

[
2
3
2

]

, feasible as expected.

• The objective is now z′ = [ 2 5 ]

[
2
3
2

]

= 11.5 > z, better, as expected.
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An example: that’s it

• Since B−1
I′ = 1

2 [ 0 2
1 −1 ] the new coefficients y′

ij in

B−1
I′ A ==

[
1 0 0 1
0 1 3

2
3
2

]

are given by

y′
1 = [ 1

0 ] , y′
2 = [ 0

1 ] , y′
3 =

[
0

3/2

]
, y′

4 =
[

1
3/2

]
,

• Now c3 − z3 = 6− [ 2 5 ]
[

0
3
2

]

= −1.5 and c4 − z4 = 8− [ 2 5 ]
[

1
3
2

]

= −1.5.

• since all cj − zj ≥ 0, the set of indices 1, 2 is optimal.

• The solution is x⋆ =







2
3
2
0
0







.
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Nice algorithm but...
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Issues with the previous example

• Clean mathematically, but very heavy notation-wise.

• Worse: lots of redundant computations: we only change one column from BI

to BI′ but always recompute at each iteration:

◦ the inverse B−1
I ,

◦ the yi’s, that is the matrix Y = B−1
I A,

◦ the zi’s which can be found through cT
I Y = cT

I B−1
I A and the reduced costs.

• Plus we assumed we had an initial feasible solution immediately... what if?

• Imagine someone solves the problem (c, A,b) before us and finds x⋆ as the
optimal solution such that cTx⋆ = z⋆.

• He gives it back to us adding the constraint cTx ≥ z⋆. Finding an initial
feasible solution is as hard as finding the optimal solution itself!
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A simpler formulation?

• For all these reasons, we look for a

◦ compact (less redundant variables and notations),
◦ fast computationally (rank one updates),

methodology: the tableaux and dictionaries methods to go through the simplex
step by step.

• We also study how to find an initial BFS and address additional issues.

• YET The simplex is not just a dictionary or a tableau method.

• The latter are tools. The simplex algorithm is 100% algebraic and
combinatorial.

• The truth is that it is just an “optimization tool in disguise”.
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The simplex algorithm
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Back to Basics: Basic Feasible Solutions, Extreme points,

Optima

Three fundamental theorems:

• Let x be a basic feasible solution (BFS) to a LP with index set I and
objective value z. If ∃e, 1 ≤ e ≤ n, e /∈ I such that ce − ze > 0 and at least
one yi,e > 0, then we can have a better basic feasible solution by replacing
an index in I by e with a new objective ẑ ≥ z, strictly if xI is non-degenerate.

• Let x⋆ be a basic feasible solution (BFS) to a LP with index set I and
objective value z⋆. If ci − z⋆

i ≤ 0 for all 1 ≤ i ≤ n then x⋆ is optimal.

• Let x be a basic feasible solution (BFS) to a LP with index set I. If ∃ an
index e /∈ I such that ye ≤ 0 then the feasible region is unbounded. If
moreover for e the reduced cost ce− ze > 0 then there exists a feasible solution
with at most m + 1 nonzero variables and an arbitrary large objective
function.
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So far, what is the simplex?

• The simplex is a family of algorithms which do the following:

1. Starts from an initial Basic feasible solution. more on that later.
2. iterates: move from one BFS I to a better BFS I′:
◦ check reduced cost coefficients cj − cT

I B−1
I aj, j ∈ O. if all negative I is

optimal, OVER.
◦ otherwise, pick one index e for which it is positive. this will enter I.
◦ Check coordinates of ye = B−1

I ae. if all ≥ 0 then optimum is
unbounded, OVER.
◦ otherwise, take the index r such that it achieves the minimum in
{

xij

yj,e
|yj,e > 0, 1 ≤ j ≤ m}, this will ensure feasibility. The rth index of

the base I is ir ≤ n.
◦ I′ = {I \ ir} ∪ e.
◦ We have improved on the objective. If xI was not degenerate, we have

strictly improved.
◦ I← I′

• The loop is on a finite set of extreme points. it either exits early (unbounded),
exits giving an answer (optimum I⋆ and corresponding solution x⋆) or loops
indefinitely (degeneracy).

VNU June 12-17 134



A Matlab Demo With Polyhedrons Containing the Origin
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A Matlab Demo With Polyhedrons Containing the Origin

now with the real matlab demo...
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A very important slide... WHY tableaux ?

• Last time: an example where we move from a base I to a new base I′, compute
B−1

I′ , do the multiplications etc.. and reach the optimum. This is the simplex.

• Double issue:

◦ Computational 1: inverting matrices costs time & money. One column is
different between BI and BI′, can we do better than inverting everything
again?
◦ Computational 2: multiplying matrices costs time & money. B−1

I A and
B−1

I′ A are related.

• Down to what we really need at each iteration:

◦ reduced cost coefficients vector (ci − zi) of Rn to pick an index e and check
optimality,
◦ All column vectors of A in the base I, that is Y , to check boundedness and

choose r, namely all coordinates of ye = B−1
I ae in particular.

◦ The current basic solution vector, B−1
I b both to choose r and on exit.

• Tableaux and Dictionaries only keep track of the last elements efficiently.
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Simplex Method with Canonical Feasible

Form
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Canonical Feasible Form: We know an initial BFS to

corresponding Standard Form

• let’s standardize a feasible (i.e.b ≥ 0) canonical form:

maximize αTy

subject to

{
Mx ≤ b
y ≥ 0

• We assume that y, α ∈ Rd for a d dimensional objective and M ∈ Rm×d and
b ∈ Rm for m constraints.
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Canonical Feasible Form: We know an initial BFS to

corresponding Standard Form

• Slack variables xd+1, · · · , xd+m can be added so that [A, Im]

[ y
xd+1

...
xd+m

]

= b and

the problem is now with c = [α, 0, · · · , 0
︸ ︷︷ ︸

m

] ∈ Rd+m

maximize x0 = cTx

subject to

{
[M, Im]x = b

x ≥ 0

• x, c ∈ Rm+d, c = [ α
0 ], A = [M, Im] ∈ Rm×(m+d) and same b ∈ Rm.

• The dimensionality of the problem is now n = d + m.

VNU June 12-17 140



Simplex Method: Tableau

Let us represent this by an (annotated) tableau:

O I

x1 x2 · · · xe · · · xd xd+1 xd+2 · · · xd+r · · · xd+m b

xd+1 m11 m12 · · · m1e · · · m1d 1 0 · · · 0 · · · 0 b1

xd+2 m21 m22 · · · m2e · · · m2d 0 1 · · · 0 · · · 0 b2
... ... ... . . . ... . . . ... ... ... . . . ... . . . ... ...

xd+r mr1 mr2 · · · mre · · · mrd 0 0 · · · 1 · · · 0 br
... ... ... . . . ... . . . ... ... ... . . . ... . . . ... ...

ed+m mm1 mm2 · · · mme · · · mmd 0 0 · · · 0 · · · 1 bm

x0 c1 c2 · · · ce · · · cd 0 0 · · · 0 · · · 0 0

• Since b ≥ 0, take an original BFS as

[

0, · · · , 0
︸ ︷︷ ︸

d

, b1, b2, · · · , bm

]T

• Why:

◦ basic: I = {d + 1, . . . , d + m}

◦ feasible: [0, · · · , 0, b1, b2, · · · , bm]
T ≥ 0.
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Simplex Method: Tableau

• the structure of the tableau so far,

A b
(c− z)′ 0

• The index set I so far {d + 1, d + 2, · · · , d + m}.

• BI = Im, B−1
I b = b, B−1A = A etc..
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Simplex Method without non-negativity and objectives...

• Remember: a basis I gives a sparse solution xI.

• there’s one basis I⋆ which is the good one.

• The solution is x such that x⋆
I = B−1

I⋆ b and the rest is zero.

• We can start with the slack variables as a basis in canonical feasible form.

• Under this form, the first matrix basis is B = I the identity matrix.

• We will move from one basis to the other. We’ve proved this is possible.

• In doing so, we also have to recast the cost.

• Let’s check how it looks in practice, without looking at feasibility and objective
related concepts.
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...the Gauss pivot...

• Consider now taking a variable out of I to replace it by a variable in O.

• r initially in I leaves the basis, e initially in O is removed.

• all terms expressed so far in xr need to be removed from all but one equation,
and xe enters instead.
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...the Gauss pivot

• This is achieved through a pivot in the tableau.

• Once the indexes r and e are agreed upon, the rules to update the tableau are:

(a) in pivot row arj ← arj/are.
(b) in pivot column are← 1, aie = 0 for i = 1, · · · , m, i 6= r: the eth column

becomes a matrix of zeros and a one.
(c) for all other elements aij ← aij −

arjaie

are
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The Gauss pivot

• Graphically,









· · · j · · · e · · ·
... . . . ... . . . ... . . .
i · · · aij · · · aie · · ·
... . . . ... . . . ... . . .
r · · · arj · · · are · · ·
... . . . ... . . . ... . . .









⇒









· · · j · · · e · · ·
... . . . ... . . . ... . . .
i · · · aij −

arjaie

are
· · · 0 · · ·

... . . . ... . . . ... . . .
r · · · arj/are · · · 1 · · ·
... . . . ... . . . ... . . .









• Look at how the column e is now a column of 0 and 1’s. This makes sense

since B−1ae =






0...
0
1
0...
0




 with 1 in eth position means ae is in the basis.
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Linear system and pivoting

• Consider the linear system







x1 + x2 − x3 + x4 = 5
2x1 − 3x2 + x3 + x5 = 3
−x1 + 2x2 − x3 + x6 = 1

• The corresponding tableau





a1 a2 a3 a4 a5 a6 b

1 1 −1 1 0 0 5
2 −3 1 0 1 0 3
−1 2 −1 0 0 1 1





VNU June 12-17 147



Simplex Method: Swapping Indexes

• in the corresponding tableau,





a1 a2 a3 a4 a5 a6 b

a4 1 1 −1 1 0 0 5
a5 2 −3 1 0 1 0 3
a6 −1 2 −1 0 0 1 1





notice the structure:

. . . . . . . . . . . . . . . . . . ...
... M ... ... I3

... b
. . . . . . . . . . . . . . . . . . ...

• And the fact that by taking the obvious basis I = {4, 5, 6} we have BI = I3

and B−1
I = I3
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Simplex Method: Let’s pivot

• Let’s pivot arbitrarily. We put 1 in the base and remove 4.





x1 a2 a3 a4 a5 a6 b

a4 1 1 −1 1 0 0 5
a5 2 −3 1 0 1 0 3
a6 −1 2 −1 0 0 1 1





which yields





a1 a2 a3 a4 a5 a6 b

a1 1 1 −1 1 0 0 5
a5 0 −5 3 −2 1 0 −7
a6 0 3 −2 1 0 1 6





• I = {1, 5, 6}, that is BI =
[

1 0 0
2 1 0
−1 0 1

]

. The basic solution is such that

xI = B−1
I b

• Note that all coordinates of a1, · · · ,a6,b in the table are given with respect to
a1, a5,a6. In particular the last column corresponds to B−1

I b...not feasible
here BTW.
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Simplex Method: again...

• Let’s pivot arbitrarily again, this time inserting 2 and removing the second
variable of the basis, 5.





a1 a2 a3 a4 a5 a6 b

a1 1 1 −1 1 0 0 5
a5 0 −5 3 −2 1 0 −7
a6 0 3 −2 1 0 1 6









a1 a2 a3 a4 a5 a6 b

a1 1 0 −2
5

3
5

1
5 0 18

5
a2 0 1 −3

5
2
5 −1

5 0 7
5

a6 0 0 −1
5 −1

5
3
5 1 9

5





• Notice how one can keep track of who is in the basis by checking where 0/1’s
columns are.

• The solution is now feasible... pure luck.
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Simplex Method: and again...

• once again, pivot inserting 3 and removing the third variable of the basis, 6.





a1 a2 a3 a4 a5 a6 b

a1 1 0 −2
5

3
5

1
5 0 18

5
a2 0 1 −3

5
2
5 −1

5 0 7
5

a6 0 0 −1
5
−1

5
3
5 1 9

5









a1 a2 a3 a4 a5 a6 b

a1 1 0 0 1 −1 −2 0
a2 0 1 0 1 −2 −3 −4
a3 0 0 1 1 −3 −5 −9





• horrible. moving randomly we have a now non-feasible degenerate basic
solution.

• yet we knew that pivoting randomly based only on yr,e 6= 0 would lead us
nowhere.
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Adding the reduced costs

• What happens when we also pivot the last line?

• Remember the last line is equal to (c− z)′ in the beginning.

• Remember also that

(a) in pivot row arj ← arj/are.
(b) in pivot column are← 1, aie = 0 for i = 0, 1, · · · ,m, i 6= r: the eth column

becomes a matrix of zeros and a one.
(c) for all other elements aij ← aij −

arjaie

are

• Here, (a) does not apply, we cannot be in the pivot row.

• we have

◦ in pivot column am+1,e = 0 : makes sense, reduced cost is zero for basis
elements.
◦ for all other elements am+1,j ← am+1,j −

arjam+1,e

are
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Adding the reduced costs

• Recapitulating, at each iteration of the pivot the matrix is exactly

. . . . . . . . . . . . . . . . . . ...
... B−1

I M ... ... B−1
I

... B−1
I b

. . . . . . . . . . . . . . . . . . ...

. . . (c− z) . . . −x0

• The pivot is thus applied on the m + 1× n + 1 tableau.

• The tableau contains everything we need, reduced costs, (minus)objective,
the coordinates of B−1

I b and B−1
I A
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A quick comment on the initialization of

the simplex

• We have seen that the simplex works when we know an initial feasible point.

• Sometimes, finding a feasible point is as difficult as the problem itself.

• How can we solve this?

Initialization methods exist. See lecture 7 of my course ORF522.
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An Example from Portfolio Optimization

VNU June 12-17 155



Simple Portfolio Theory

• n traded financial assets.

• For each asset a (random) return Rj at horizon T . R = PT
p0
− 1.

• Rj is a [−1,∞)-valued random variable. not much more...
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Simple Portfolio Theory

• A (long) portfolio is a vector of Rn which represents the proportion of wealth
invested in each asset.

• Namely x such that x1, · · · , xn ≥ 0 and
∑

xi
= 1.

• In $ terms, Given M dollars, hold M · xi of asset i.

• The performance of the portfolio is a random variable, ρ(x) =
∑n

i=1 xiRi.

• Suppose x = [ 1
3

1
3

1
3 ]

T
in the previous example.

• the realized value for ρ(x) is 4.1%
3 + 5.8%

3 + 4.2%
3 = 4.7% = 0.047.
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Simple Portfolio Theory

• For a second, imagine we know the actual return realizations rj.

• Where would you invest?

• A bit ambitious.. we’re not likely to be able see the future.

• Imagine we can guess realistically the expected returns E(Rj).

• For instance, E[Rgoog] = .5 = 50%, E[Ribm] = .05 = 5%, E[Rdow] = .01 = 1%.

• If your goal is to maximize expected return,

x = argmax(E(ρ(x)),

where would you put your money?

• The other question... is that really what you want in the first place?
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Risk?

• PHARMA is a pharmaceutical company working on a new drug.

◦ its researchers (or you) think there is a 50% probability that the new drug
works
◦ Let’s do a binary scenario to keep things simple.

⊲ the drug works and is approved by FDA: PHARMA’s market value is
multiplied by 3. R = 2

⊲ the drug does not work: PHARMA goes bankrupt R = −1.
◦ Expected return: E[RPHARMA] = 2+−1

2 = 1 = 100%. You are expecting to
double your bet.

• BORING is a company that produces and sells screwdrivers.

◦ The return is uniformly distributed between −.01 = −1% and .02 = 2%
◦ Expected return is .0005, that is 0.5%.

• Would you bet everything on PHARMA with these cards? something is
missing in our formulation
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Risk?

• Portfolio optimization needs to input the investor’s aversion to risk.

• If the investor uses x = argmax (E(ρ(x)), he forgot about risk.

• Solution: include risk in the program. Risk is vaguely a quantification of the
dispersion / entropy of the returns of a portfolio.

• Different choices:

◦ Variance:
⊲ C is the covariance matrix of the vector r.v. R takes values in Rn,

C = E[(R− E[R])(R− E[R])T ].
⊲ The variance of ρ(x) is simply xTCx.
⊲ Maximal expected return under variance constraints = mean-variance

optimization.

◦ Mean-absolute deviation (MAD):
⊲ Namely E [|(ρ(x)− E[ρ(x)])|] = E[|xT R̄|] where R̄ = R − E[R].
⊲ Penalized estimation: x = argmax

x≥0,xT1n=1

λ︸︷︷︸
trade-off

· E[ρ(x)]
︸ ︷︷ ︸

expected return

−E[|xT R̄|]
︸ ︷︷ ︸

risk

.
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Risk

• The variance formulation leads to a quadratic program:

maximize xT
E[R]

subject to x ≥ 0,xT1n = 1
xTCx ≤ λ

• The MAD formulation leads to something closer to linear programming:

maximize λxT
E[R]− E[|xT R̄|]

subject to x ≥ 0,
xT1n = 1

• Problem: lots of expectations E...

• We need to fill in some expected values above by some guesses.
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Approximations

• We write r̃ for E[R] which can be guessed according to...

◦ research, analysts playing with excel, valuation models.
◦ historical returns.

• We also need to approximate E[|xT R̄|].

• Suppose we have a history of N returns (r1, · · · , rN) where each r ∈ Rn.

◦ Write r̄ =
∑N

j=1 rj.

◦ in practice, approximate E[|xT R̄| ≈
∑N

j=1 |x
T (rj − r̄)|

• this becomes:

maximize λxTr− 1
N

∑N
j=1 |x

T (rj − r̄)|

subject to x ≥ 0,xT1n = 1
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Approximations

• Now add artificial variables yj = |xT (rj − r̄)|. One for each observation. Now,

maximize λxTr− 1
N

∑N
j=1 yj

subject to x ≥ 0,
yj ≥ 0,
xT1n = 1,
−yj ≤ xT (rj − r̄) ≤ yj, j = 1, · · · , N

• Use the simplex...
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