Vietnam National University - Ho Chi Minh

Optimization, Machine Learning and Kernel Methods.

Machine Learning - Kernel Methods

Marco Cuturi - Princeton University

Regression, Classification and other Supervised Tasks

• Two associated random variables

 \circ A random variable x, taking values in \mathcal{X} ,

- \circ A random variable y, taking values in $\mathcal Y.$
- Two samples of (x, y) i.i.d. distributed from their joint law
 - $\circ \{(\mathbf{x}_1, \mathbf{y}_1), \cdots, (\mathbf{x}_n, \mathbf{y}_n)\}, n \text{ couples of } \mathcal{X} \times \mathcal{Y}.$

Challenge: **predict** \mathbf{y} when given only \mathbf{x} .

• In practice, find a function $\mathcal{X} \to \mathcal{Y}$ for which $f(\mathbf{x})$ is not too different from y on average.

Binary Classification

- $\mathcal{Y} = \{-1, 1\}.$
- f needs to be a functions that, given x predicts a label,

```
f: \mathcal{X} \mapsto \{-1, 1\}
```

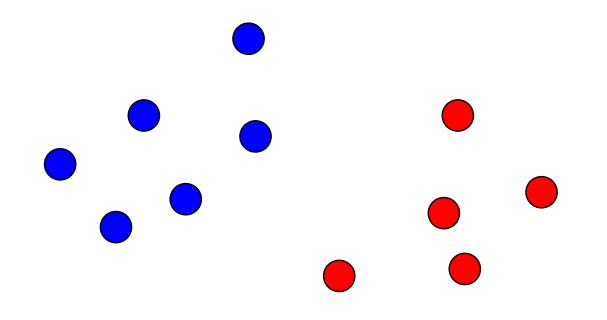
of course, many possible choices for f's shape.

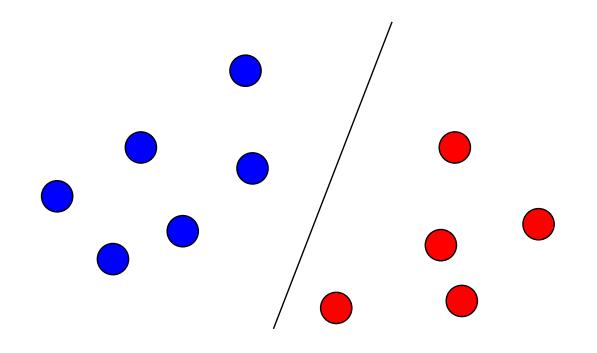
- We review here **linear** hyperplanes in $\mathcal{X} = \mathbb{R}^d$ first.
- We represent it in \mathbb{R}^2 for simplicity.

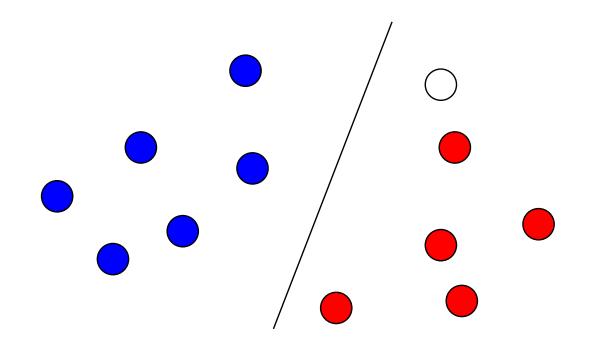
Next slides will cover an important algorithm, the **SVM** algorithm

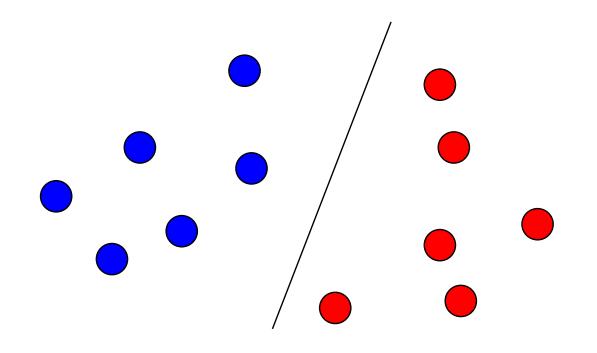
• this algorithm can be naturally expressed in terms of *kernels*. we review later other algorithms for which this is also the case.

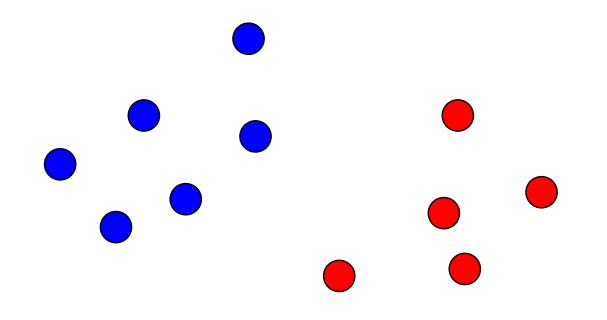
thanks to Jean-Philippe Vert for many of the following figures and slides.

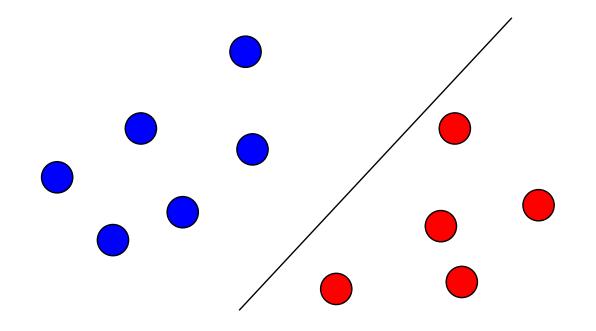


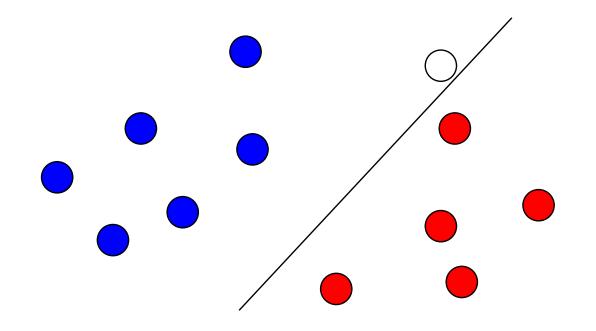


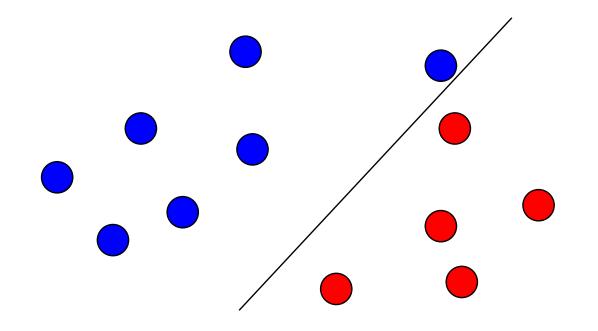




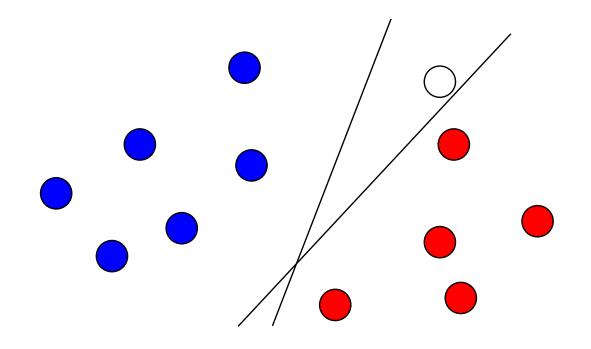


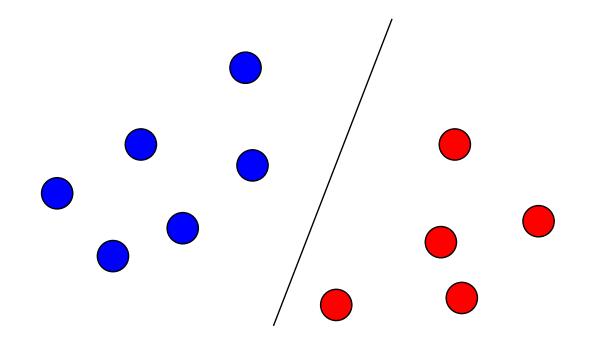


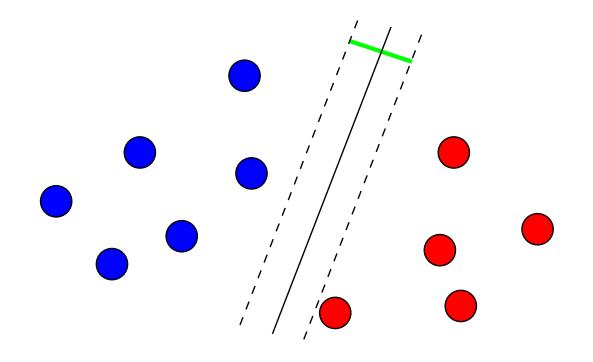


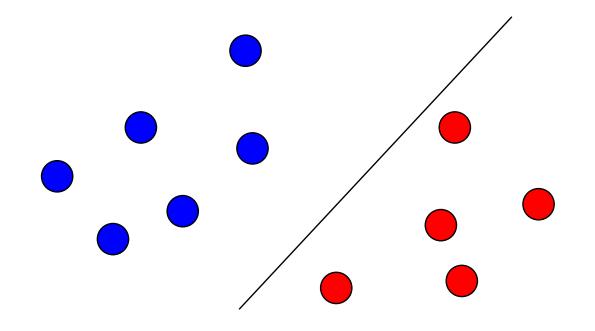


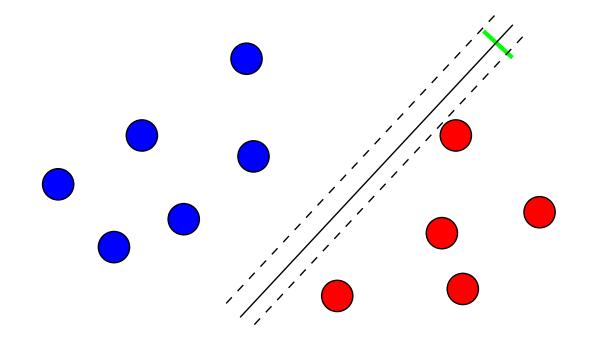
Which one is better?

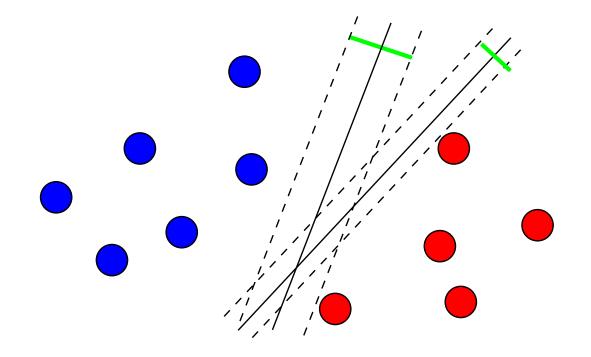




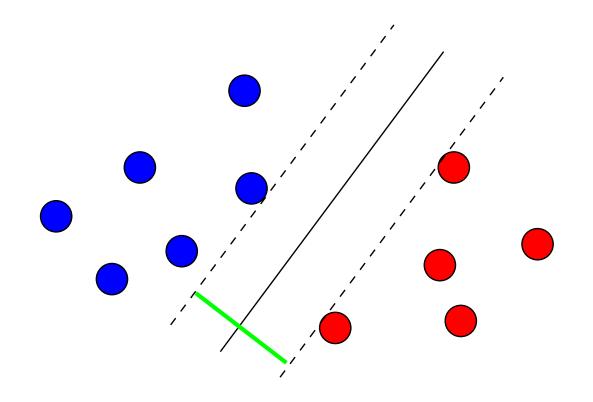




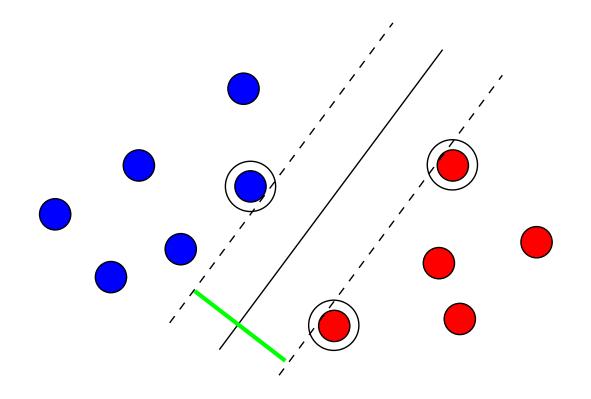




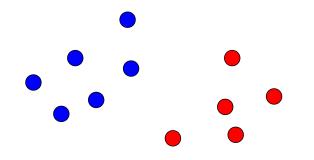
Largest Margin Linear Classifier



Support Vectors with Large Margin



In equations



• The **training set** is a finite set of *n* data/class pairs:

$$\mathcal{T} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\},\$$

where $\mathbf{x}_i \in \mathbb{R}^d$ and $\mathbf{y}_i \in \{-1, 1\}$.

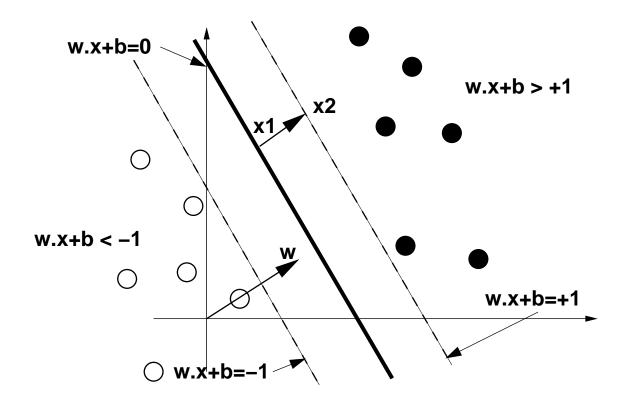
 We assume (for the moment) that the data are linearly separable, i.e., that there exists (w, b) ∈ ℝ^d × ℝ such that:

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b > 0 & \text{if } \mathbf{y}_i = 1, \\ \mathbf{w}^T \mathbf{x}_i + b < 0 & \text{if } \mathbf{y}_i = -1. \end{cases}$$

How to find the largest separating hyperplane?

For the linear classifier $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$ consider the *interstice* defined by the hyperplanes

- $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = +1$
- $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = -1$



The margin is $2/||\mathbf{w}||$

• Indeed, the points \mathbf{x}_1 and \mathbf{x}_2 satisfy:

$$\begin{cases} \mathbf{w}^T \mathbf{x}_1 + b = 0, \\ \mathbf{w}^T \mathbf{x}_2 + b = 1. \end{cases}$$

• By subtracting we get $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = 1$, and therefore:

$$\gamma = 2||\mathbf{x}_2 - \mathbf{x}_1|| = \frac{2}{||\mathbf{w}||}.$$

where γ is the margin.

All training points should be on the appropriate side

• For positive examples $(y_i = 1)$ this means:

 $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

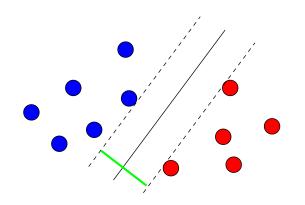
• For negative examples $(y_i = -1)$ this means:

$$\mathbf{w}^T \mathbf{x}_i + b \le -1$$

• in both cases:

$$\forall i = 1, \dots, n, \qquad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$$

Finding the optimal hyperplane



• Find (**w**, *b*) which minimize:

 $||\mathbf{w}||^2$

under the constraints:

$$\forall i = 1, \dots, n, \qquad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

This is a classical quadratic program on \mathbb{R}^{d+1} linear constraints - quadratic objective

Lagrangian

• In order to minimize:

$$\frac{1}{2}||\mathbf{w}||^2$$

under the constraints:

$$\forall i = 1, \dots, n, \qquad y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

- introduce one dual variable α_i for each constraint,
- namely, for each training point. The Lagrangian is, for $\alpha \succeq 0$,

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right).$$

The Lagrange dual function

$$g(\alpha) = \inf_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right) \right\}$$

is only defined when

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i \mathbf{x}_i, \quad (\text{ derivating w.r.t } \mathbf{w}) \quad (*)$$
$$0 = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i, \quad (\text{derivating w.r.t } b) \quad (**)$$

substituting (*) in g, and using (**) as a constraint, get the dual function $g(\alpha)$.

- To solve the dual problem, maximize g w.r.t. α .
- Strong duality holds. KKT gives us $\alpha_i(\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) 1) = 0$, either $\alpha_i = 0$ or $\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) = 1$.
- $\alpha_i \neq 0$ only for points on the support hyperplanes $\{(\mathbf{x}, \mathbf{y}) | \mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1\}$.

Dual optimum

The dual problem is thus

maximize
$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

such that $\alpha \succeq 0, \sum_{i=1}^{n} \alpha_i \mathbf{y}_i = 0.$

This is a quadratic program on \mathbb{R}^n , with *box constraints*. α^* can be found efficiently using dedicated optimization softwares

Recovering the optimal hyperplane

Once α* is found, we recover (w^T, b*) corresponding to the optimal hyperplane.

•
$$\mathbf{w}^T$$
 is given by $\mathbf{w}^T = \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T$,

• b^* is given by the conditions on the support vectors $\alpha_i > 0$, $\mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$,

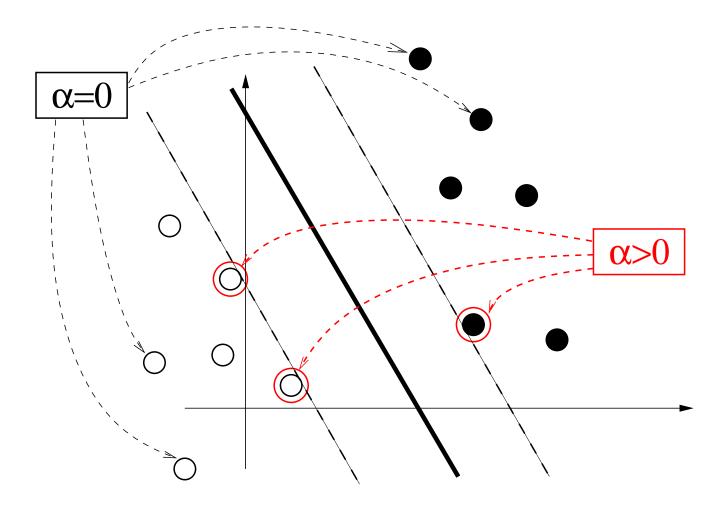
$$b^* = -\frac{1}{2} \left(\min_{\mathbf{y}_i = 1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) + \max_{\mathbf{y}_i = -1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) \right)$$

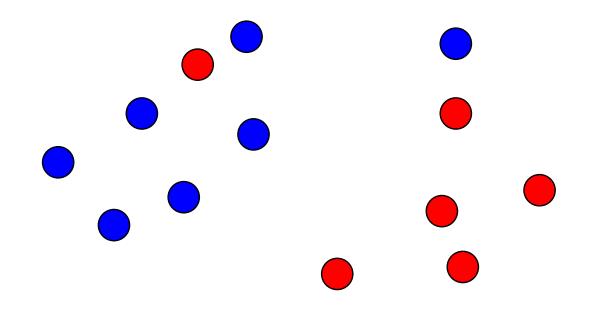
• the **decision function** is therefore:

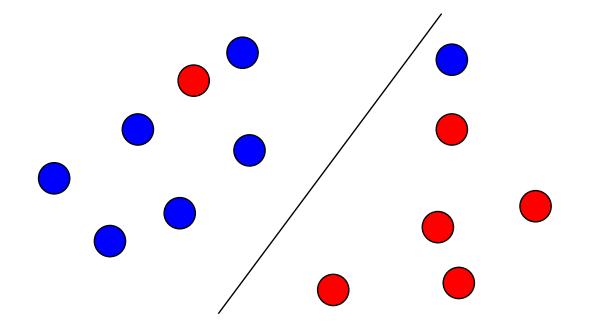
$$f^*(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b^*$$
$$= \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T \mathbf{x} + b^*.$$

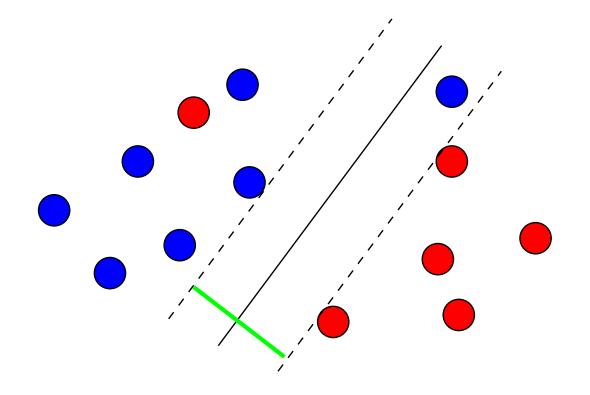
• Here the **dual** solution gives us directly the **primal** solution.

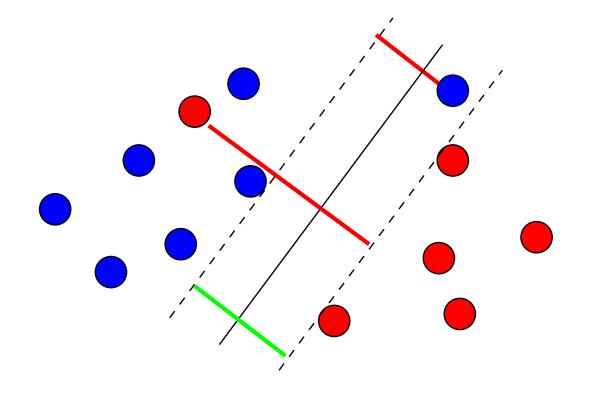
Interpretation: support vectors









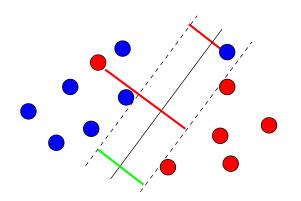


Soft-margin SVM

- Find a trade-off between large margin and few errors.
- Mathematically:

$$\min_{f} \left\{ \frac{1}{\mathsf{margin}(f)} + C \times \mathsf{errors}(f) \right\}$$

• C is a parameter



Soft-margin SVM formulation

 $\bullet\,$ The margin of a labeled point $({\bf x},{\bf y})$ is

$$\mathsf{margin}(\mathbf{x}, \mathbf{y}) = \mathbf{y} \left(\mathbf{w}^T \mathbf{x} + b \right)$$

- The error is
 - \circ 0 if margin(**x**, **y**) > 1, \circ 1 − margin(**x**, **y**) otherwise.
- The soft margin SVM solves:

$$\min_{\mathbf{w},b} \{ \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \}$$

- $c(u, y) = \max\{0, 1 yu\}$ is known as the hinge loss.
- $c(\mathbf{w}^T\mathbf{x}_i + b, \mathbf{y}_i)$ associates a mistake cost to the decision \mathbf{w}, b for example \mathbf{x}_i .

Dual formulation of soft-margin SVM

• The soft margin SVM program

$$\min_{\mathbf{w},b} \{ \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \}$$

can be rewritten as

minimize
$$\|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that $\mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \ge 1 - \xi_i$

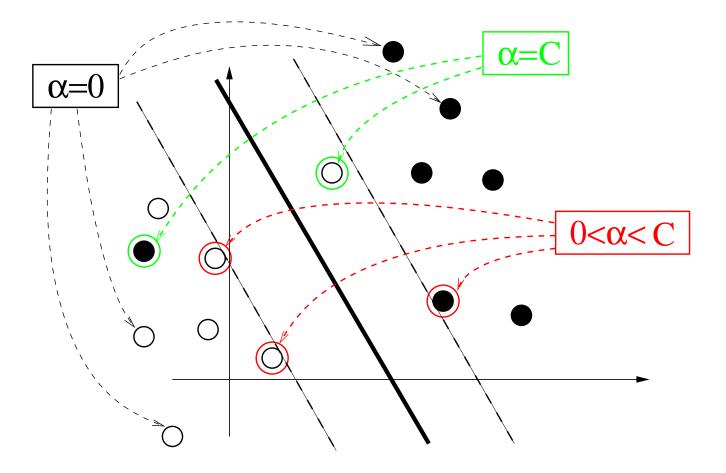
• In that case the dual function

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j \mathbf{y}_i \mathbf{y}_j \mathbf{x}_i^T \mathbf{x}_j,$$

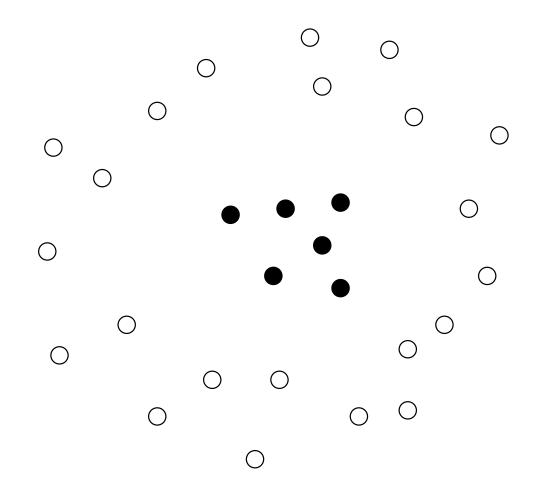
which is finite under the constraints:

$$\begin{cases} 0 \le \alpha_i \le \mathbf{C}, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

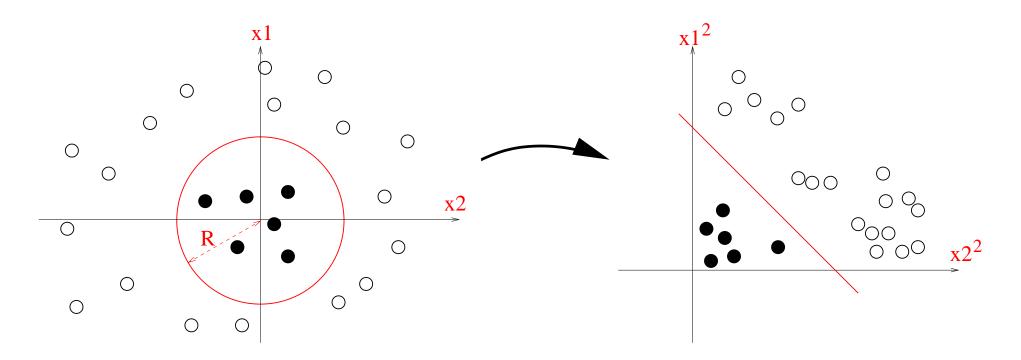
Interpretation: bounded and unbounded support vectors



Sometimes linear classifiers are not interesting



Solution: non-linear mapping to a feature space



Let $\phi(\mathbf{x}) = (x_1^2, x_2^2)'$, $\mathbf{w} = (1, 1)'$ and b = 1. Then the decision function is:

$$f(\mathbf{x}) = x_1^2 + x_2^2 - R^2 = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b,$$

Kernel trick for SVM's

- use a mapping ϕ from ${\mathcal X}$ to a feature space,
- which corresponds to the **kernel** k:

$$\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

• Example: if
$$\phi(\mathbf{x}) = \phi\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix} x_1^2\\x_2^2\end{bmatrix}$$
, then

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = (x_1)^2 (x_1')^2 + (x_2)^2 (x_2')^2.$$

Training a SVM in the feature space

Replace each $\mathbf{x}^T \mathbf{x}'$ in the SVM algorithm by $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = k(\mathbf{x}, \mathbf{x}')$

• The dual problem is to maximize

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{k(\mathbf{x}_i, \mathbf{x}_j)},$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

• The **decision function** becomes:

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(x) \rangle + b^*$$

= $\sum_{i=1}^n y_i \alpha_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b^*.$ (1)

The kernel trick

- The explicit computation of $\phi({\bf x})$ is not necessary. The kernel $k({\bf x},{\bf x}')$ is enough.
- The SVM optimization for α works **implicitly** in the feature space.
- The SVM is a kernel algorithm: only need to input K and y:

maximize
$$g(\alpha) = \alpha^T \mathbf{1} - \frac{1}{2} \alpha^T (\mathbf{y}^T \mathbf{K} \mathbf{y}) \alpha$$

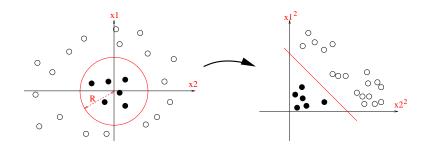
such that $0 \le \alpha_i \le C$, for $i = 1, ..., n$
 $\sum_{i=1}^n \alpha_i \mathbf{y}_i = 0.$

• in the end the solution $f(\mathbf{x}) = \sum_{i=1}^{n} y_i \alpha_i k(\mathbf{x}_i, \mathbf{x}) + b$.

Kernel example: polynomial kernel

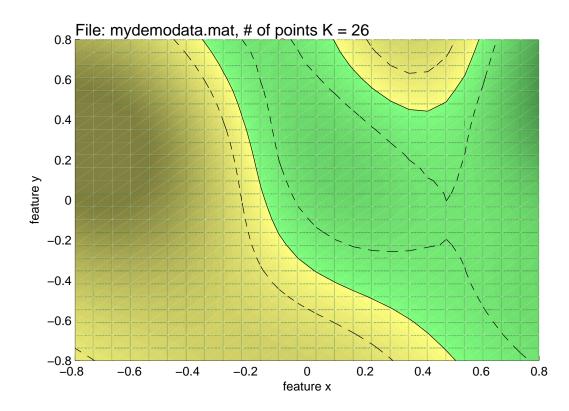
• For $\mathbf{x} = (x_1, x_2)^\top \in \mathbb{R}^2$, let $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$:

$$\begin{aligned} \mathbf{K}(\mathbf{x}, \mathbf{x'}) &= x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 \\ &= \{x_1 x_1' + x_2 x_2'\}^2 \\ &= \{\mathbf{x}^T \mathbf{x'}\}^2 . \end{aligned}$$



Some demonstrations using Matlab

• playing with a few kernels and a few points



SVM's: a particular case of a more general framework, penalized estimation

Empirical Risk Minimization

- Starting with $\{(\mathbf{x}_1, \mathbf{y}_1), \cdots, (\mathbf{x}_n, \mathbf{y}_n)\}$, n couples of $\mathcal{X} \times \mathcal{Y}$,
- A class of functions \mathcal{F} ,
- A cost function c : 𝒴 × 𝒴, c ≥ 0, which penalizes discrepancies (hinge, least squares etc.)
- find a function which minimizes

$$\hat{f} = \operatorname*{argmin}_{f \in \boldsymbol{\mathcal{F}}} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{c}(f(\mathbf{x}_i), y_i)$$

and use this f as a decision function.

- As usual in minimizations, we like:
 - Convex problems, unique minimizers
 - Stable solutions numerically.

Linear least squares

- When $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$,
- $\mathcal{F} = \{ \mathrm{x} \mapsto eta^T \mathrm{x} + b \,, eta \in \mathbb{R}^d, b \in \mathbb{R} \}, \, c(\mathrm{y}_1, \mathrm{y}_2) = \| \mathrm{y}_1 \mathrm{y}_2 \|^2$,
- The problem is known as **regression** with the **least squares criterion**.
- In this case, the minimizer

$$\underset{f \in \boldsymbol{\mathcal{F}}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|^{2} = \underset{\beta \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \|\beta^{T} \mathbf{x}_{i} + b - \mathbf{y}_{i}\|^{2}$$

is **unique assuming** n > d and no degeneracy.

• Why?

$$R: (b, \beta) \to \frac{1}{n} \sum_{i=1}^{n} \|\beta^{T} \mathbf{x}_{i} + b - \mathbf{y}_{i}\|^{2} = \frac{1}{n} \|X^{T} \begin{bmatrix} b \\ \beta \end{bmatrix} - y\|^{2}$$

is convex, where $X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{d+1 \times n} \text{ and } y = \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \end{bmatrix} \in \mathbb{R}^{n}.$

Linear least squares

• Notice that

$$R(b,\beta) = \frac{1}{n} \left(\begin{bmatrix} b \\ \beta \end{bmatrix}^T X X^T \begin{bmatrix} b \\ \beta \end{bmatrix} - 2y^T X^T \begin{bmatrix} b \\ \beta \end{bmatrix} + \|y\|^2 \right)$$

• Let us take the gradient of that function

$$n\nabla R = 2XX^T \begin{bmatrix} b\\ \beta \end{bmatrix} - 2Xy$$

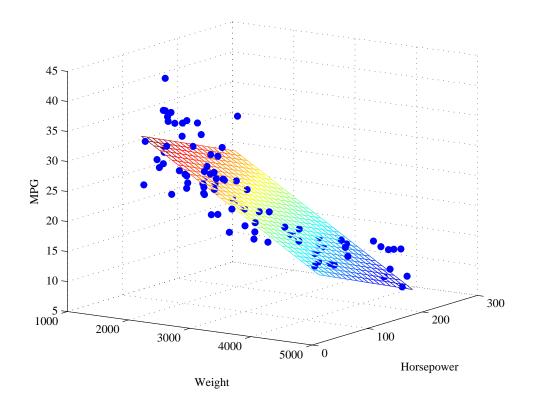
- Hence this gradient is zero for $\begin{bmatrix} b \\ \beta \end{bmatrix} = (XX^T)^{-1}Xy$
- $XX^T \in \mathbf{S}_+^n$. This works if $XX^T \in \mathbb{R}^{d+1}$ is invertible, that is $XX^T \in \mathbf{S}_{++}^n$.
- Remark:

$$XX^{T} = \begin{bmatrix} n & n\bar{x}_{1} & n\bar{x}_{2} & \cdots & n\bar{x}_{d} \\ n\bar{x}_{1} & & & \\ n\bar{x}_{2} & & \mathbf{X}\mathbf{X}^{T} \\ \vdots & & \mathbf{X}\mathbf{X}^{T} \\ n\bar{x}_{d} & & & \end{bmatrix} = \begin{bmatrix} n & n\mu^{T} \\ n\mu & \mathbf{X}\mathbf{X}^{T} \end{bmatrix}$$

where \mathbf{X} is simply the $d \times n$ sample matrix without the constant 1.

Example in \mathbb{R}^3

- Sample of cars: x desribes weight and horsepower of a car.
- y is the miles-per-gallon : high is eco-friendly, low is bad.



• The hyperplane fits the data quite well, $\begin{bmatrix} b \\ \beta \end{bmatrix} \begin{bmatrix} 47.7694 \\ -0.0066 \\ -0.0420 \end{bmatrix} \begin{bmatrix} b \\ \beta \end{bmatrix}$.

Linear least-squares is not the ideal tool though...

- What happens when $d \gg n$? (XX^T) is no longer invertible...
 - high-dimensional data in genomics,
 - images analysis (*e.g.*lots of features)

- What happens when (XX^T) is badly conditioned $\left(\frac{\lambda_{\min}(XX^T)}{\lambda_{\max}(XX^T)} \approx 0\right)$?
 - if $\lambda_{\min}(XX^T) = 1e 10$, $\lambda_{\max}((XX^T)^{-1}) = 1e10!!$
 - $\circ\,$ Very bad numerical stability of the solution...

• When $d \gg n$, we might want to do variable selection,

 \circ *i.e.* pick a subset d' of the d variables which is relevant to predict y.

• *i.e.* favor vectors β such that $\|\beta\|_0 = \operatorname{card} \beta_i \neq 0$ is small.

Penalized Least-Squares

• For all these problems, there is an appropriate penalization:

$$(\hat{\beta}, \hat{b}) = \operatorname*{argmin}_{\beta \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \|\beta^T \mathbf{x}_i + b - \mathbf{y}_i\|^2 + \lambda \|(\beta, b)\|$$

• we recover **least-square regression** when $\lambda = 0$;

• ridge regression when $\lambda > 0$ and $\|(\beta, b)\| = \|(\beta, b)\|_2^2 = b^2 + \left(\sum_{i=1}^n \beta_i^2\right)^2$:

$$\begin{bmatrix} b\\ \beta \end{bmatrix} = \left(XX^T + \lambda \begin{bmatrix} 1 & 0 & \cdots & 0\\ 0 & 1 & 0 & 0\\ \vdots & 0 & \ddots & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1} Xy$$

• the lasso when $\lambda > 0$ and $\|(\beta, b)\| = \|(\beta, b)\|_1 = |b| + \sum_{i=1}^n |\beta_i|$;

What about the case where linearity does not work?

• Many examples show that life is not always linear... kernels at the rescue.

- Let us take a further look at $\beta = (XX^T)^{-1}Xy$.
- For any new point, $\beta^T \mathbf{x}$ plays the same role as $\mathbf{w}^T \mathbf{x}$ in the SVM.
- We consider a new point $\mathbf{x} \in \mathbb{R}^d$ with the constant 1, *i.e.* $\mathbf{x} \leftarrow \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$.

•
$$[b, \beta^T]\mathbf{x} = \mathbf{x}^T (XX^T + \lambda I_d)^{-1}Xy.$$

Kernel ridge regression

• A simple inversion trick states that $(XX^T + \lambda I_d)^{-1}Xy = X(\lambda I_n + X^TX)^{-1}y$

• Hence
$$[b, \beta^T] \mathbf{x} = \mathbf{x}^T X (\lambda I_n + X^T X)^{-1} y = \begin{bmatrix} \mathbf{x}^T \mathbf{x}_1 \\ \mathbf{x}^T \mathbf{x}_2 \\ \vdots \\ \mathbf{x}^T \mathbf{x}_d \end{bmatrix}^T (\lambda I_n + [\mathbf{x}_i^T \mathbf{x}_j])^{-1} y!$$

- Bottom line: we have shown how to compute a regression tool which only depends on dot-products.
- Dot-products can be replaced by kernels!

$$f(\mathbf{x}) = \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ k(\mathbf{x}, \mathbf{x}_2) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_d) \end{bmatrix}^T (\lambda I_n + [k(\mathbf{x}_i, \mathbf{x}_j)])^{-1} y$$

Kernel methods

- Many other standard linear algorithms,
 - Principal Component Analysis,
 - Canonical Correlation Analysis,
 - Fisher Discriminant analysis,
 - *etc.*can be modified to **incorporate** kernel similarities.

Algorithms based on kernels are known as kernel methods.

Kernel Methods

A reasonably large academic subfield

• Widespread popularity in machine learning now

- Gained momentum in the late 90's with the support vector machine,
- Rooted in much older maths.
- Kernel methods are a pluridisciplinary field, publications appearing in
 - computer science (*nips, journ. of machine learning, ICML..*),
 - statistics and functional analysis (annals of statistics..),
 - optimization (*Mathematical Programming..*),
 - Different application subfields (*Neural Computation..*)

Kernel Methods

- Standard text-books:
 - Introduction [SS02]
 - More about kernels [STC04]
 - \circ More learning theory [SC08]
 - First chapters [STV04]
 - "Mathematical" perspective [BTA03]. The real deal: [BCR84].
- Some short surveys,
 - ∘ journal papers [HHS08], [MMR+01]
 - a survey on my webpage (local copy, not arxiv): key to all citations!
- On the web:
 - Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, Stéphane Canu.

Some terminology

Etymology : from old english *cyrnel*, diminutive of corn (seed)

the word kernel appears in different different contexts...

- The *linux* kernel...
- Kernel of a linear operator of \mathcal{X} : $\ker(L) = \{x \in \mathcal{X} | L(x) = 0\}.$
- Kernel of a matrix in $\mathbb{R}^{d \times d}$, *i.e.* its nullspace $\{\mathbf{x} \in \mathbb{R}^d | A\mathbf{x} = \mathbf{0}\}$.
- In set theory, for a function $f : \mathcal{X} \mapsto \mathcal{Y}$, $\ker(f) = \{(x, x') | f(x) = f(x')\}$.
- Kernel of an integral transform T, $Tf(u) = \int_{t_1}^{t_2} k(t, u) f(t) dt$
- Smoothing kernel, a function $k \ge 0, k(u) = k(-u), \int_{-\infty}^{\infty} k(u) du = 1.$

•
$$K(t,x,y) = \frac{1}{(4\pi t)^{d/2}}e^{-\frac{\|x-y\|^2}{4t}}$$
 solves heat equation $K(t,x,y) = \Delta_x K(t,x,y)$

sets, subspaces, one-variable, two-variables, three-variables function...

Moral of the story

No need to look for a common or primitive meaning

- Kernel is just a word mathematicians fancy (unfortunately!)
- People enjoy it because of its vague "core" meaning.

• Don't feel you have missed something if you do not see the connection between different *kernel* objects in mathematics. There might be none...

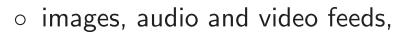
• Will mention some links during the lecture between different definitions.

What is a kernel

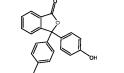
In the context of this lecture...

• A kernel k is a function

- which compares two objects of a space \mathcal{X} , e.g...
 - $\circ\,$ strings, texts and sequences,



- $\circ\,$ graphs, interaction networks and 3D structures
- whatever actually... time-series of graphs of images? graphs of texts?...



Fundamental properties of a kernel

symmetric

$$k(\mathbf{x}, \mathbf{y}) = k(\mathbf{y}, \mathbf{x}).$$

positive-(semi)definite

for any *finite* family of points $\mathbf{x}_1, \cdots, \mathbf{x}_n$ of \mathcal{X} , the matrix

$$K = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_i) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_i) & \cdots & k(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ k(\mathbf{x}_i, \mathbf{x}_1) & k(\mathbf{x}_i, \mathbf{x}_2) & \cdots & k(\mathbf{x}_i, \mathbf{x}_i) & \cdots & k(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & k(\mathbf{x}_n, \mathbf{x}_2) & \cdots & k(\mathbf{x}_n, \mathbf{x}_i) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix} \succeq 0$$

is positive semidefinite (has a nonnegative spectrum).

K is often called the **Gram matrix** of $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ using k

What can we do with a kernel?

The setting

- Pretty simple setting: a set of objects $\mathbf{x}_1, \cdots, \mathbf{x}_n$ of \mathcal{X}
- Sometimes additional information on these objects
 - \circ labels $\mathbf{y}_i \in \{-1,1\}$ or $\{1,\cdots,\#(\mathsf{classes})\}$,
 - $\circ \,$ scalar values $\mathbf{y}_i \in \mathbb{R}$,
 - \circ associated object $\mathbf{y}_i \in \mathcal{Y}$

• A kernel $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$.

A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

- The functional perspective: represent **points as functions**.
- The new or alternative dot-product perspective.
- Nonlinearity : linear combination of kernel evaluations.
- Summary of a sample through its kernel matrix.

Represent any point in ${\mathcal X}$ as a function

For every x, the map $\mathbf{x} \longrightarrow k(\mathbf{x}, \cdot)$ associates to x a function $k(\mathbf{x}, \cdot)$ from \mathcal{X} to \mathbb{R} .

• Suppose we have a kernel k on bird images

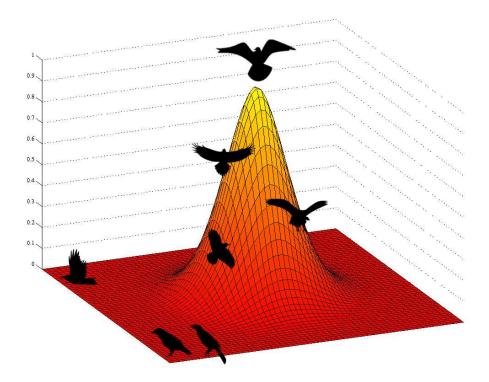
• Suppose for instance

$$k(\mathbf{F}, \mathbf{F}) = .32$$

Represent any point in ${\mathcal X}$ as a function

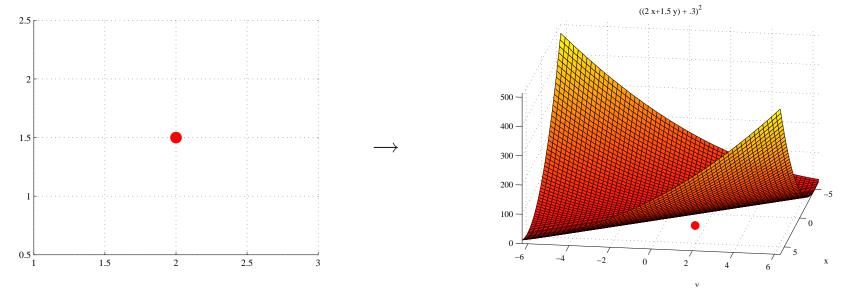
• We examine one image in particular:

• With kernels, we get a **representation** of that bird as a real-valued function, defined on the space of birds, represented here as \mathbb{R}^2 for simplicity.



Represent any point in ${\mathcal X}$ as a function

- If the bird example was confusing...
- $k\left(\begin{bmatrix}x\\y\end{bmatrix},\begin{bmatrix}x'\\y'\end{bmatrix}\right) = \left(\begin{bmatrix}x & y\end{bmatrix}\begin{bmatrix}x'\\y'\end{bmatrix} + .3\right)^2$
- From a point in \mathbb{R}^2 to a function defined over \mathbb{R}^2 .



 We assume implicitly that the functional representation will be more useful than the original representation.

Dot-product perspective

- Suppose $\mathcal{X} = \mathbb{R}^d$.
- The simplest kernel: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$.
- For a data sample $X = {\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n}$.

• In matrix form,
$$X = \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{d \times n}.$$

• In standard linear algebra, the Gram matrix of X is

$$K = \left[\mathbf{x}_i^T \mathbf{x}_j\right]_{1 \le i,j \le n} = X^T X.$$

Dot-product perspective

• Consider a different kernel $k_G(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{\sigma^2}\right)$,

$$K_G = \left[k_G(\mathbf{x}_i, \mathbf{x}_j)\right]_{1 \le i, j \le n}$$

• obviously
$$\mathbf{x}_i^T \mathbf{x}_j \neq k_G(\mathbf{x}_i, \mathbf{x}_j)$$
.

- is there a representation $\xi_i \in \mathbb{R}^{??}$ for each point such that $\xi_i^T \xi_j = k_G(\mathbf{x}_i, \mathbf{x}_j)$?
- Linear algebra to the rescue: $K = PDP^T$, $U = P\sqrt{D}P^T$, hence $K = U^TU$, providing $U = \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \xi_1 & \xi_2 & \cdots & \xi_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{n \times n}$.

Dot-product perspective

• In summary, we have defined n vectors such that

$$\left[k_G(\mathbf{x}_i, \mathbf{x}_j)\right] = \left[\xi_i^T \xi_j\right]$$

• Great: for each \mathbf{x}_i we have a vector representation ξ_i .

• Problem:

- \circ this representation depends explicitly on the sample X.
- For a new \mathbf{x}_{n+1} , difficult to find ξ_{n+1} such that $\xi_{n+1}^T \xi_j = k_G(\mathbf{x}_{n+1}, \mathbf{x}_j)$.

• We will see that there exists a mapping ϕ , such that

- $\circ \phi : \mathcal{X} \to \mathcal{H}$ where \mathcal{H} is a dot-product space,
- \circ which gives a dot product representation for k,

$$k_G(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle.$$

for all points (\mathbf{x}, \mathbf{y}) ...

Decision functions as linear combination of kernel evaluations

• Linear decisions functions are a major tool in statistics, that is functions

$$f(\mathbf{x}) = \beta^T \mathbf{x} + \beta_0.$$

• Implicitly, a point \mathbf{x} is processed depending on its characteristics x_i ,

$$f(\mathbf{x}) = \sum_{i=1}^{d} \boldsymbol{\beta}_{i} x_{i} + \boldsymbol{\beta}_{0}.$$

the free parameters are scalars $\beta_0, \beta_1, \cdots, \beta_d$.

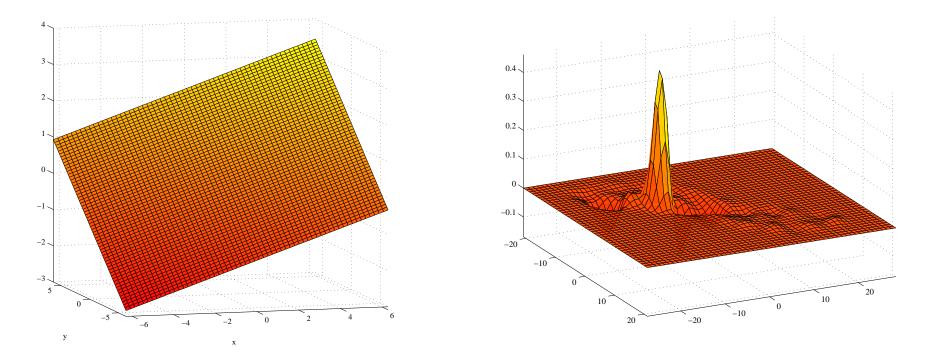
• Kernel methods yield candidate decision functions

$$f(\mathbf{x}) = \sum_{j=1}^{n} \alpha_j k(\mathbf{x}_j, \mathbf{x}) + \alpha_0.$$

the free parameters are scalars $\alpha_0, \alpha_1, \cdots, \alpha_n$.

Decision functions as linear combination of kernel evaluations

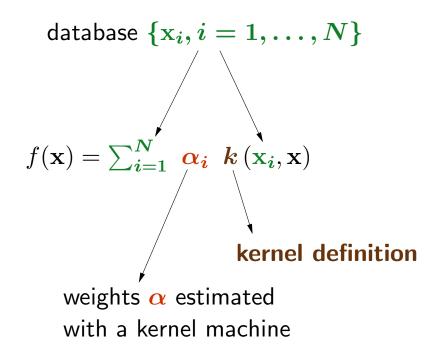
• linear decision surface / linear expansion of kernel surfaces (here $k_G(\mathbf{x}_i, \cdot)$)



- Kernel methods are considered non-linear tools.
- Yet not completely "nonlinear" \rightarrow only one-layer of nonlinearity.

kernel methods use the data as a functional base to define decision functions

Decision functions as linear combination of kernel evaluations



- f is any predictive function of interest of a new point x.
- Weights α are **optimized** with a kernel machine (*e.g.* support vector machine)

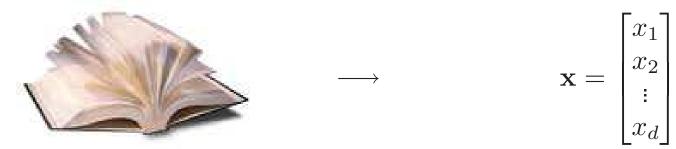
intuitively, kernel methods provide decisions based on how similar a point x is to each instance of the training set

• Imagine a little task: you have read 100 novels so far.

- You would like to know whether you will enjoy reading a **new** novel.
- A few options:
 - read the book...
 - $\circ\,$ have friends read it for you, read reviews.
 - $\circ\,$ try to guess, based on the novels you read, if you will like it

Two distinct approaches

- Define what **features** can characterize a book.
 - $\circ~$ Map each book in the library onto vectors



typically the x_i 's can describe...

- \triangleright # pages, language, year 1st published, country,
- > coordinates of the main action, keyword counts,
- > author's prizes, popularity, booksellers ranking
- Challenge: find a decision function using 100 ratings and features.

- Define what makes two novels similar,
 - $\circ~$ Define a kernel k which quantifies novel similarities.
 - $\circ~$ Map the library onto a Gram matrix

• Challenge: find a decision function that takes this 100×100 matrix as an input.

Given a new novel,

- with the features approach, the prediction can be rephrased as what are the features of this new book? what features have I found in the past that were good indicators of my taste?
- with the **kernel approach**, the prediction is rephrased as **which novels this book is similar or dissimilar to?** what **pool of books** did I find the most influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.

In summary

• A feature based analysis of a data-driven problem:

objects
$$o_1, \dots, o_n \longrightarrow$$
 feature vectors $X = \begin{bmatrix} \vdots & \vdots & \dots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ \vdots & \vdots & \dots & \vdots \end{bmatrix} \in \mathbb{R}^{\mathbf{d} \times n}$

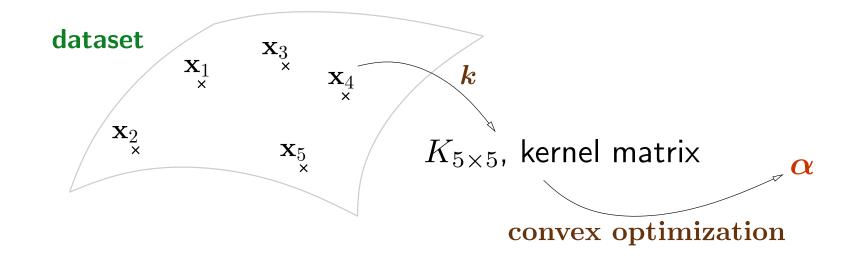
• A similarity based analysis of a data driven problem:

objects
$$o_1, \dots, o_n \to \text{Gram } K = \begin{bmatrix} k(o_1, o_1) & k(o_1, o_2) & \dots & k(o_1, o_n) \\ k(o_2, o_1) & k(o_2, o_2) & \dots & k(o_2, o_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(o_n, o_1) & k(o_n, o_2) & \dots & k(o_n, o_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

• Some parallels (can define $K = X^T X$ or $X = \sqrt{K}$ or Cholesky) but...

Algorithms use either features or (kernel) similarities.

in kernel methods, clear separation between the kernel...



and **Convex optimization** (thanks to psdness of K, more later) to output the α 's.

Mathematical Considerations

different definitions and properties of the same mathematical object

An intuitive perspective: Feature maps

Theorem 1. A function k on $\mathcal{X} \times \mathcal{X}$ is a positive definite kernel if and only if there exists a set T and a mapping ϕ from \mathcal{X} to $l^2(T)$, the set of real sequences $\{u_t, t \in T\}$ such that $\sum_{t \in T} |u_t|^2 < \infty$, where

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{X}, \, k(\mathbf{x}, \mathbf{y}) = \sum_{t \in T} \phi(\mathbf{x})_t \, \phi(\mathbf{y})_t = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_{l^2(X)}$$

- A very popular perspective in the machine learning world.
- Equivalent to previous definitions, less stressed in the RHKS literature.

$$\mathbf{x} \longrightarrow \phi(\mathbf{x}) = \begin{bmatrix} \vdots \\ \vdots \\ \phi(\mathbf{x})_t \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}_{t \in T}$$

where the ϕ_t are a set of – possibly infinite but countable – features.

kernels \rightarrow Gram matrices

• If $X = {\mathbf{x}_i}_{i \in I}$ in \mathcal{X} ,

$$K_X = [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j \in I} \succeq 0.$$

• If one applies any transformation of K_X which keeps eigenvalues nonnegative,

$$\begin{array}{ccccc} r: & \mathbf{S}_n & \longmapsto & \mathbf{S}_n \\ & K & \longrightarrow & r(K), \end{array}$$

r(K) is a valid positive definite matrix and hence a kernel on X.

- examples: $K + t(t > 0), K^2, e^K, etc.$
- in fact, if $K = P \Delta P^T$, any transformation that preserves the spectrum's non-negativity would be ok.
- Yet... this kernel is only valid on X, the sample, not the whole space \mathcal{X} .

Meaning somehow... Gram matrices \rightarrow kernels

positive definite kernels and distances

- Kernels are often called similarities.
- the higher $k(\mathbf{x}, \mathbf{y})$, the more similar \mathbf{x} and \mathbf{y} .
- With distances, the lower $d(\mathbf{x}, \mathbf{y})$, the closer \mathbf{x} and \mathbf{y} .
- Many distances exist in the literature. Can they be used to define kernels?

what is the link between kernels and distances? high similarity $\stackrel{?}{=}$ small distance

- At least true for the Gaussian kernel $k(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x}-\mathbf{y}\|^2/2\sigma^2}$...
- Important theorems taken from [BCR84].

Distances

Definition 1 (Distances, or metrics). A nonnegative-valued function d on $\mathcal{X} \times \mathcal{X}$ is a distance if it satisfies, $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$:

(i) $d(\mathbf{x}, \mathbf{y}) \ge 0$, and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$ (non-degeneracy)

(ii) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symmetry),

(iii) $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (triangle inequality)

- Very simple example: if \mathcal{X} is a Hilbert space, $\|\mathbf{x} \mathbf{y}\|$ is a distance. It is usually called a... Hilbertian distance.
- By extension, any distance $d(\mathbf{x}, \mathbf{y})$ which can be written as $\|\phi(\mathbf{x}) \phi(\mathbf{y})\|$ where ϕ maps \mathcal{X} to any Hilbert space is called a **Hilbertian metric**.
- Useful. To build Gaussian kernel, Laplace kernels $k(\mathbf{x}, \mathbf{y}) = e^{-t ||\mathbf{x}-\mathbf{y}||} \dots$
- Yet does not suffice:

the missing link: negative definite kernels

Definition 2 (Negative Definite Kernels). A symmetric function $\psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a negative definite (n.d.) kernel on \mathcal{X} if

$$\sum_{i,j=1}^{n} c_i c_j \psi\left(x_i, x_j\right) \le 0 \tag{1}$$

holds for any $n \in \mathbb{N}, x_1, \ldots, x_n \in \mathcal{X}$ and $c_1 \ldots, c_n \in \mathbb{R}$ such that $\sum_{i=1}^n c_i = 0$.

• Example $\psi(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2$.

 \circ prove by decomposing into $\|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - 2\langle \mathbf{x}_i, \mathbf{x}_j \rangle$

• $\mathcal{N}(\mathcal{X})$ is also a closed convex cone.

important example: k is p.d. $\Rightarrow -k$ is n.d. Converse completely false.

negative definite kernels & positive definite kernels

A first link between these two kernels:

Proposition 2. Let $x_0 \in \mathcal{X}$ and let $\psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric kernel. Let

$$\varphi(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \psi(\mathbf{x}, x_0) + \psi(\mathbf{y}, x_0) - \psi(\mathbf{x}, \mathbf{y}) - \psi(x_0, x_0).$$

Then k is positive definite $\Leftrightarrow \psi$ is negative definite.

• Example: $\|\mathbf{x} - x_0\|^2 + \|\mathbf{y} - x_0\|^2 - \|\mathbf{x} - \mathbf{y}\|^2$ is a p.d. kernel.

Proof.

•
$$\Rightarrow$$
 For $\mathbf{x}_1, \cdots, \mathbf{x}_n$, and c_1, \cdots, c_n s.t. $\sum_{i=1}^n c_i = \mathbf{0}$,

$$\sum_{i,j=1}^{n} c_i c_j \varphi(\mathbf{x}_i, \mathbf{x}_j) = -\sum_{i,j=1}^{n} c_i c_j \psi(\mathbf{x}_i, \mathbf{x}_j) \ge 0.$$

•
$$\leftarrow$$
 For $\mathbf{x}_1, \cdots, \mathbf{x}_n$ and c_1, \cdots, c_n , let $c_0 = -\sum_{i=1}^n$. Set $\mathbf{x}_0 = x_0$. Then

$$0 \ge \sum_{i,j=0}^{n} c_{i}c_{j}\psi(\mathbf{x}_{i},\mathbf{x}_{j})$$

= $\sum_{i,j=1}^{n} c_{i}c_{j}\psi(\mathbf{x}_{i},\mathbf{x}_{j}) + \sum_{i=1}^{n} c_{i}c_{0}\psi(\mathbf{x}_{i},x_{0}) + \sum_{j=1}^{n} c_{0}c_{j}\psi(x_{0},\mathbf{x}_{j}) + c_{0}^{2}\psi(x_{0},x_{0}).$
= $\sum_{i,j=1}^{n} [\psi(\mathbf{x}_{i},x_{0}) + \psi(\mathbf{x}_{j},x_{0}) - \psi(\mathbf{x}_{i},\mathbf{y}_{j}) - \psi(x_{0},x_{0})] = \sum_{i,j=1}^{n} c_{i}c_{j}\varphi(\mathbf{x}_{i},\mathbf{x}_{j}).$

negative definite kernels & positive definite kernels

Proposition 3. For a p.d. kernel $k \ge 0$ on $\mathcal{X} \times \mathcal{X}$, the following conditions are equivalent

 $(i) - \log k \in \mathcal{N}(\mathcal{X}),$

(ii) k^t is positive definite for all t > 0.

If k satisfies either, k is said to be **infinitely divisible**,

Proof.

- $-\log k = \lim_{n \to \infty} n(1 k^{\frac{1}{n}})$ which is the limit of a series of n.d. kernels if (ii) is true, hence $(ii) \Rightarrow (i)$.
- conversely, if $-\log k \in \mathcal{N}(\mathcal{X})$ we use Proposition 2. Writing $\psi = -\log k$ and choosing $x_0 \in \mathcal{X}$ we have

$$k^{t} = e^{-t\psi(\mathbf{x},\mathbf{y})} = e^{t\psi(x_{0},x_{0})} e^{t\varphi(\mathbf{x},\mathbf{y})} e^{-t\psi(\mathbf{x},x_{0})} e^{-t\psi(\mathbf{y},x_{0})} \in \mathcal{P}(\mathcal{X})$$

negative definite kernels: (Hilbertian distance)² + ... Proposition 4. Let $\psi : \mathcal{X} \times \mathcal{X}$ be a n.d. kernel. Then there is a Hilbert space H and a mapping ϕ from X to H such that

$$\psi(\mathbf{x}, \mathbf{y}) = \|\phi(\mathbf{x}) - \phi(\mathbf{y})\|^2 + f(\mathbf{x}) + f(\mathbf{y}),$$
(2)

where $f : \mathcal{X} \to \mathbb{R}$. If $\psi(x, x) = 0$ for all $\mathbf{x} \in \mathcal{X}$ then f can be chosen as zero. If the set $\{(\mathbf{x}, \mathbf{y}) | \psi(\mathbf{x}, \mathbf{y}) = 0\}$ is exactly $\{(\mathbf{x}, \mathbf{x}), \mathbf{x} \in \mathcal{X}\}$ then $\sqrt{\psi}$ is a Hilbertian distance.

Proof. Fix x_0 and define

$$\varphi(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \frac{1}{2} \left[\psi(\mathbf{x}, x_0) + \psi(\mathbf{y}, x_0) - \psi(\mathbf{x}, \mathbf{y}) - \psi(x_0, x_0) \right].$$

By Proposition 2 φ is p.d. hence there is a RKHS and mapping ϕ such that $\varphi(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$. Hence

$$\|\phi(\mathbf{x}) - \phi(\mathbf{y})\|^2 = \varphi(\mathbf{x}, \mathbf{x}) + \varphi(\mathbf{y}, \mathbf{y}) - 2\varphi(\mathbf{x}, \mathbf{y})$$
$$= \psi(\mathbf{x}, \mathbf{y}) - \frac{\psi(\mathbf{x}, \mathbf{x}) + \psi(\mathbf{y}, \mathbf{y})}{2}.$$

distances & negative definite kernels

- whenever a n.d. kernel ψ
 - \circ vanishes on the *diagonal*, *i.e.* on $\{(x, x), x \in \mathcal{X}\}$,
 - \circ is 0 only on the diagonal, to ensure non-degeneracy,

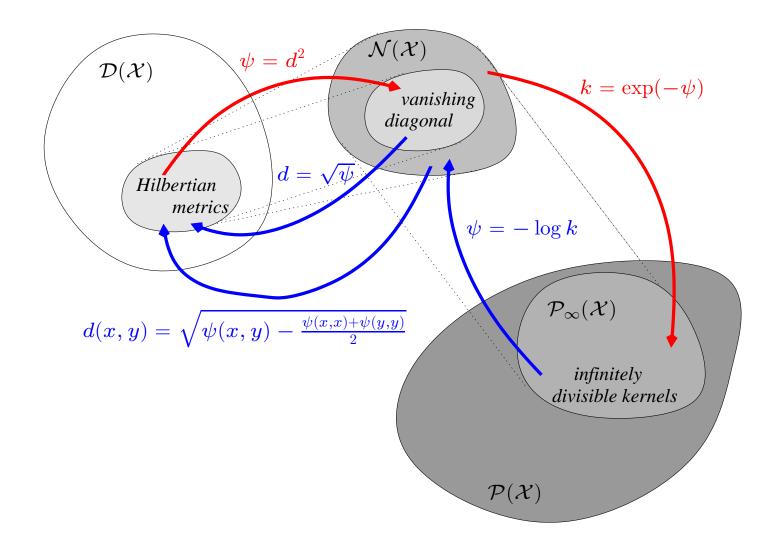
 $\rightarrow \sqrt{\psi}$ is a Hilbertian distance for \mathcal{X} .

• More generally, for a n.d. kernel ψ ,

$$\sqrt{\psi(\mathbf{x},\mathbf{y}) - \frac{\psi(\mathbf{x},\mathbf{x})}{2} - \frac{\psi(\mathbf{y},\mathbf{y})}{2}}$$
 is a (pseudo)**metric** for \mathcal{X} .

 On the contrary, to each distance does not always correspond a n.d. kernel (Monge-Kantorovich distance, edit-distance etc..)

In summary...



• Set of distances on \mathcal{X} is $\mathcal{D}(\mathcal{X})$, Negative definite kernels $\mathcal{N}(\mathcal{X})$, positive and infinitely divisible positive kernels $\mathcal{P}(\mathcal{X})$ and $\mathcal{P}_{\infty}(\mathcal{X})$ respectively.

Some final remarks on $\mathcal{N}(\mathcal{X})$ and $\mathcal{P}(\mathcal{X})$

- $\mathcal{N}(\mathcal{X})$ is a cone. Additionally,
 - o if ψ ∈ N(X), ∀c ∈ ℝ, ψ + c ∈ N(X).
 o if ψ(x, x) ≥ 0 for all x ∈ X, ψ^α ∈ N(X) for 0 < α < 1 since

$$\psi^{\alpha} = \frac{\alpha}{\Gamma(1-\alpha)} \int_0^\infty t^{-\alpha-1} (1-e^{-t\psi}) dt$$

and $\log(1+\psi) \in \mathcal{N}(\mathcal{X})$ since

$$\log(1+\psi) = \int_0^\infty (1-e^{-t\psi}) \frac{e^{-t}}{t} dt.$$

 $\circ~\mbox{if}~\psi>0,~\mbox{then}~\log(\psi)\in\mathcal{N}(\mathcal{X})~\mbox{since}$

$$\log(\psi) = \lim_{c \to \infty} \log\left(\psi + \frac{1}{c}\right) = \lim_{c \to \infty} \log\left(1 + c\psi\right) - \log c$$

Some final remarks on $\mathcal{D}(\mathcal{X}), \mathcal{N}(\mathcal{X}), \mathcal{P}(\mathcal{X})$

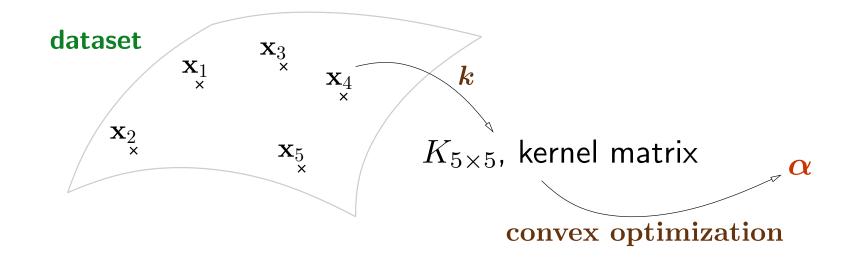
• $\mathcal{P}(\mathcal{X})$ is a cone. Additionally,

- \circ The pointwise product k_1k_2 of two p.d. kernels if a p.d. kernel
- $k^n \in \mathcal{P}(\mathcal{X})$ for $n \in \mathbb{N}$. $(k+c)^n$ too...as well as $\exp(k) \in \mathcal{P}(\mathcal{X})$:
 - $\triangleright \exp(k) = \sum_{i=0}^{\infty} \frac{k^i}{i!}$, a limit of p.d. kernels.
 - $\triangleright \exp(k) = \exp(-(-k))$ where $-k \in \mathcal{N}(\mathcal{X})$.
- The sum of two infinitely divisible kernels is not necessarily infinitely divisible.
 - $\circ -\log k_1$ and $-\log k_2$ might be in $\mathcal{N}(\mathcal{X})$, but $-\log(k_1+k_2)$?...

Defining kernels

Intuitively an important issue...

Remember that kernel methods drop all previous information



to proceed exclusively with K.

if the kernel K is poorly informative, the optimization cannot be very useful... it is therefore **crucial** that the kernel quantifies **noteworthy similarities**.

Kernels on vectors

(relatively) easy case: we are only given feature vectors, with **no** access to the original data.

- Reminder (copy paste of previous slide!): for a family of kernels k_1, \dots, k_n, \dots
 - The sum $\sum_{i=1}^{n} \lambda_i k_i$ is p.d., given $\lambda_1, \ldots, \lambda_n \geq 0$ • The product $k_1^{a_1} \cdots k_n^{a_n}$ is p.d., given $a_1, \ldots, a_n \in \mathbb{N}$ • $\lim_{n\to\infty} k_n$ is p.d. (if the limit exists!).
- Using these properties we can prove the p.d. of
 - o the polynomial kernel k_p(x, y) = (⟨**x**, **y**⟩ + b)^d, b > 0, d ∈ ℕ,
 o the Gaussian kernel k_σ(x, y) = e<sup>-\frac{||**x**-**y||^2}{2\sigma^2}** which can be rewritten as
 </sup>

$$k_{\sigma}(x,y) = \left[e^{-\frac{\|\mathbf{x}\|^2}{2\sigma^2}}e^{-\frac{\|\mathbf{y}\|^2}{2\sigma^2}}\right] \cdot \left[\sum_{i=0}^{\infty} \frac{\langle \mathbf{x}, \mathbf{y} \rangle^i}{i!}\right]$$

Kernels on vectors

• the Laplace kernels, using some n.d. kernel weaponry,

$$k_{\lambda}(x,y) = e^{-\lambda \|\mathbf{x} - \mathbf{y}\|^{\boldsymbol{a}}}, \quad 0 < \lambda, \ 0 < \boldsymbol{a} \le 2$$

 \circ the all-subset Gaussian kernel in \mathbb{R}^d ,

$$k(x,y) = \prod_{i=1}^{d} \left(1 + ae^{-b(x_i - y_i)^2} \right) = \sum_{I \subset \{1, \cdots, d\}} a^{\#(I)} e^{-b\|\mathbf{x}_I - \mathbf{y}_I\|^2}.$$

• A variation on the Gaussian kernel: Mahalanobis kernel,

$$k_{\Sigma}(x,y) = e^{-(\mathbf{x}-\mathbf{y})^T \Sigma^{-1}(\mathbf{x}-\mathbf{y})},$$

idea: correct for discrepancies between the magnitudes and correlations of different variables.

 $\circ~$ Usually Σ is the empirical covariance matrix of a sample of points.

Kernels on vectors

- These kernels can be seen as *meta*-kernels which can use any feature representation.
- Example: Gaussian kernel of Gaussian kernel feature maps,

$$k_{G^2}(\mathbf{x}, \mathbf{y}) = k_G \left(e^{-\frac{\|\mathbf{x}-\cdot\|^2}{2\sigma^2}}, e^{-\frac{\|\mathbf{y}-\cdot\|^2}{2\sigma^2}} \right) = e^{-\frac{2-e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}}}{2\lambda^2}}$$

- Not sure this is very useful though!
- Indeed, the real challenge is not to define funky kernels,

the challenge is to tune the parameters b, d, σ, Σ .

Kernels on structured objects

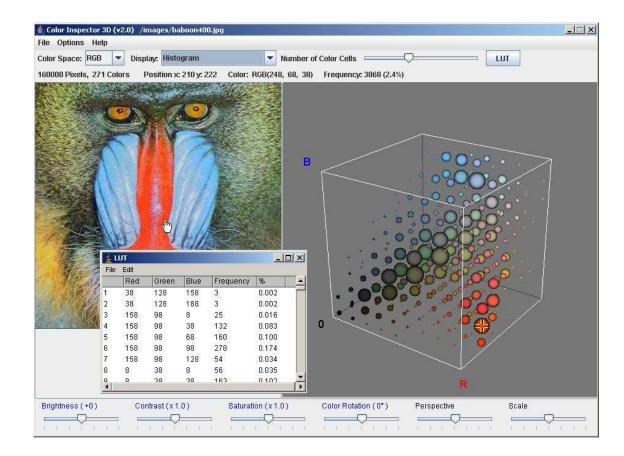
• Structured objects?

- texts, webpages, documents
- sounds, speech, music,
- images, video segments, movies,
- \circ 3d structures, sequences, trees, graphs
- Structured objects means
 - objects with a tricky structure,
 - which cannot be simply embedded in a vector space of small dimensionality,
 - without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space

Vectors in \mathbb{R}^n_+ and Histograms

• A powerful and popular feature representation for structured objects: **histograms of smaller building-blocks of the object**:



- histograms are simple instances of probability measures,
 - \circ nonnegative coordinates, sum up to 1.

Standard metrics for Histograms

Information geometry, introduced yesterday, studies distances between densities.

- Reference : [AN01]
- An abridged bestiary of **negative definite distances** on the probability simplex:

$$\psi_{JD}(\theta, \theta') = h\left(\frac{\theta + \theta'}{2}\right) - \frac{h(\theta) + h(\theta')}{2},$$

$$\psi_{\chi^2}(\theta, \theta') = \sum_i \frac{(\theta_i - \theta'_i)^2}{\theta_i + \theta'_i}, \quad \psi_{TV}(\theta, \theta') = \sum_i |\theta_i - \theta'_i|,$$

$$\psi_{H_2}(\theta, \theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta'_i}|^2, \quad \psi_{H_1}(\theta, \theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta'_i}|.$$

• Recover kernels through

$$k(\theta, \theta') = e^{-t\psi}, \quad t > 0$$

Information Diffusion Kernel [LL05,ZLC05]

- Solve the heat equation on the multinomial manifold, using the Fisher metric
- Approximate the solution with

$$k_{\Sigma_d}(\theta, \theta') = e^{-\frac{1}{t}\arccos^2(\sqrt{\theta} \cdot \sqrt{\theta'})},$$

- \arccos^2 is the squared geodesic distance between θ and θ' as elements from the unit sphere $(\theta_i \rightarrow \sqrt{\theta_i})$.
- In [ZLC05]: the use of

$$k_{\Sigma_d}(\theta, \theta') = e^{-\frac{1}{t}\arccos(\sqrt{\theta} \cdot \sqrt{\theta'})},$$

is advocated.

• the geodesic distance is a n.d. kernel on the whole sphere $(\arccos^2 is not)$.

Transportation Metrics for Histograms

Beyond information geometry, the family of transportation distances.

- Suppose $\mathbf{r} = (r_1, \cdots, r_d)$ and $\mathbf{c} = (c_1, \cdots, c_d)$ are two histograms in \mathbb{R}^n_+ .
- Define the set of transportations

$$U(\mathbf{r}, \mathbf{c}) = \{ F \in \mathbb{R}^{d \times d} | F\mathbf{1} = \mathbf{r}, F^T\mathbf{1} = \mathbf{c} \}.$$

• Transportation distances between ${\bf r}$ and ${\bf c}:$

$$d_{\mathsf{cost}}(\mathbf{rc}) = \min_{F \in U(\mathbf{r}, \mathbf{c})} \mathsf{cost}(F).$$

Monge-Kantorovich: $cost(F) = \langle F, D \rangle$ where D is a n.d. matrix.

- d_{cost} is **not** n.d. in the general case.
- Alternatives:

$$k_{\text{cost}}(\mathbf{rc}) = \int_{F \in U(\mathbf{r},\mathbf{c})} e^{-\operatorname{cost}(F)}.$$

• works when cost = 0: the volume of $U(\mathbf{r}, \mathbf{c})$ is a p.d. kernel of \mathbf{r} and \mathbf{c} . [Cut07]

Statistical Modeling and Kernels

Histograms cannot always summarize efficiently the structures of ${\mathcal X}$

- Statistical models of complex objects provide richer explanations:
 - Hidden Markov Models for sequences and time-series,
 - VAR, VARMA, ARIMA etc. models for time-series,
 - $\circ~$ Branching processes for trees and graphs
 - Random Markov Fields for images *etc.*
- $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ are interpreted as i.i.d realizations of one or many densities on \mathcal{X} .
- These densities belong to a model $\{p_{ heta}, heta \in \Theta \subset \mathbb{R}^d\}$

Can we use **generative** (statistical) **models** in **discriminative** (kernel and metric based) **methods**?

Fisher Kernel

• The Fisher kernel [JH99] between two elements \mathbf{x}, \mathbf{y} of $\mathcal X$ is

$$k_{\hat{\theta}}(\mathbf{x}, \mathbf{y}) = \left(\frac{\partial \ln \boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \theta}\Big|_{\hat{\boldsymbol{\theta}}}\right)^{T} \boldsymbol{J}_{\hat{\boldsymbol{\theta}}}^{-1} \left(\frac{\partial \ln \boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{y})}{\partial \theta}\Big|_{\hat{\boldsymbol{\theta}}}\right),$$

• $\hat{\theta}$ has been selected using sample data (*e.g.* MLE), • $J_{\hat{\theta}}^{-1}$ is the Fisher information matrix computed in $\hat{\theta}$.

- The statistical model $\{p_{ heta}, heta \in \Theta\}$ provides:
 - finite dimensional *features* through the score vectors,
 - A *Mahalanobis metric* associated with these vectors through $J_{\hat{\theta}}$.
- Alternative formulation:

$$k_{\hat{\theta}}(x,y) = e^{-\frac{1}{\sigma^2} \left(\nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{x}) - \nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{y}) \right)^T J_{\hat{\theta}}^{-1} \left(\nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{x}) - \nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{y}) \right)}$$

with the meta-kernel idea.

Fisher Kernel Extended [TKR+02,SG02]

- Minor extensions, useful for binary classification:
- Estimate $\hat{\theta}_1$ and $\hat{\theta}_2$ for each class respectively,
- consider the score vector of the likelihood ratio

$$\phi_{\hat{\theta}_1,\hat{\theta}_2} : \mathbf{x} \mapsto \left(\frac{\partial \ln \frac{p_{\theta_1}(\mathbf{x})}{p_{\theta_2}(\mathbf{x})}}{\partial \vartheta} \Big|_{\hat{\vartheta} = (\hat{\theta}_1,\hat{\theta}_2)} \right),$$

where $\vartheta = (\theta_1, \theta_2)$ is in Θ^2 .

• Use this logratio's score vector to propose instead the kernel

$$(x,y) \mapsto \phi_{\hat{\theta}_1,\hat{\theta}_2}(\mathbf{x})^T \phi_{\hat{\theta}_1,\hat{\theta}_2}(\mathbf{y}).$$

Mutual Information Kernel: densities as feature extractors

- More **bayesian** flavor \rightarrow drops maximum-likelihood estimation of θ . [See02]
- Instead, use prior knowledge on $\{p_{ heta}, heta \in \Theta\}$ through a density ω on Θ
- Mutual information kernel k_{ω} :

$$k_{\omega}(\mathbf{x}, \mathbf{y}) = \int_{\Theta} p_{\theta}(\mathbf{x}) p_{\theta}(\mathbf{y}) \, \omega(d\theta).$$

• The feature maps $0 \le p_{\theta}(\mathbf{x}) \le 1$ and $0 \le p_{\theta}(\mathbf{y}) \le 1$.

 k_{ω} is big whenever many **common** densities p_{θ} score high probabilities for **both** x and y

- Explicit computations sometimes possible, namely conjugate priors.
- Example: context-tree kernel for strings.

Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximum *a posteriori* approximation of the MI kernel.

• What? How? by setting the prior ω to the multivariate Gaussian density

$$\mathcal{N}(\hat{\theta}, J_{\hat{\theta}}^{-1}),$$

an approximation known as Laplace's method,

• Writing

$$\Phi(x) = \nabla_{\hat{\theta}} \ln p_{\theta}(x) = \frac{\partial \ln p_{\theta}(x)}{\partial \theta} \Big|_{\hat{\theta}}$$

we get

$$\log p_{\theta}(x) \approx \log p_{\hat{\theta}}(x) + \Phi(x)(\theta - \hat{\theta}).$$

Mutual Information Kernel & Fisher Kernels

• Using $\mathcal{N}(\hat{\theta},J_{\hat{\theta}}^{-1})$ for ω yields

$$k(x,y) = \int_{\Theta} p_{\theta}(\mathbf{x}) p_{\theta}(\mathbf{y}) \,\omega(d\theta),$$

$$\approx C \int_{\Theta} e^{\log p_{\hat{\theta}}(x) + \Phi(x)^{T}(\theta - \hat{\theta})} e^{\log p_{\hat{\theta}}(y) + \Phi(y)^{T}(\theta - \hat{\theta})} e^{-(\theta - \hat{\theta})^{T}J_{\hat{\theta}}(\theta - \hat{\theta})} d\theta$$

$$= C p_{\hat{\theta}}(x) p_{\hat{\theta}}(y) \int_{\Theta} e^{(\Phi(x) + \Phi(y))^{T}(\theta - \hat{\theta}) + (\theta - \hat{\theta})^{T}J_{\hat{\theta}}(\theta - \hat{\theta})} d\theta$$

$$= C' p_{\hat{\theta}}(x) p_{\hat{\theta}}(y) e^{\frac{1}{2}(\Phi(x) + \Phi(y))^{T}J_{\hat{\theta}}^{-1}(\Phi(x) + \Phi(y))}$$
(1)

• the kernel

$$\tilde{k}(x,y) = \frac{k(x,y)}{\sqrt{k(x,x)k(y,y)}}$$

is equal to the Fisher kernel in exponential form.

Marginalized kernels - Graphs and Sequences

- Similar ideas: leverage latent variable models. [TKA02,KTI03]
- For location or time-based data,
 - $\circ\,$ the probability of emission of a token x_i is conditioned by
 - an **unobserved** latent variable $s_i \in S$, where S is a finite space of possible states.
- for observed sequences $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n)$, sum over all possible state sequences the weighted product of these probabilities:

$$k(x,y) = \sum_{s \in S} \sum_{s' \in S} p(s|x) p(s'|y) \kappa ((x,s), (y,s'))$$

• closed form computations exist for graphs & sequences.

Kernels on MLE parameters

• Use model directly to extract a single representation from observed points:

$$x \mapsto \hat{\theta}_x, \quad y \mapsto \hat{\theta}_y,$$

through MLE for instance.

• compare x and y through a kernel k_{Θ} on Θ ,

$$k(x,y) = k_{\Theta}(\hat{\theta}_{\mathbf{x}}, \hat{\theta}_{\mathbf{y}}).$$

• Bhattacharrya affinities:

$$k_{\beta}(\mathbf{x}, \mathbf{y}) = \int_{\mathcal{X}} p_{\hat{\theta}_{\mathbf{x}}}(z)^{\beta} p_{\hat{\theta}_{\mathbf{y}}}(z)^{\beta} dz$$

for $\beta > 0$.