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Regression, Classification and other Supervised Tasks

e Two associated random variables

o A random variable z, taking values in X,
o A random variable y, taking values in ).

e Two samples of (z,y) i.i.d. distributed from their joint law

o {(x1,¥1), " ,(Xn,yn)}, n couples of X x ).

Challenge: predict y when given only x.

e In practice, find a function X — Y for which f(x) is not too different from y
on average.
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Binary Classification

e V={-1,1}.

e [ needs to be a functions that, given x predicts a label,
f:X—{-1,1}

of course, many possible choices for f's shape.
e We review here linear hyperplanes in X = R first.

e We represent it in R? for simplicity.

Next slides will cover an important algorithm, the SVM algorithm

e this algorithm can be naturally expressed in terms of kernels. we review later
other algorithms for which this is also the case.

thanks to Jean-Philippe Vert for many of the following figures and slides.
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Linear classifier, some degrees of freedom
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Which one is better?
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A criterion to select a linear classifier: the margin
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Largest Margin Linear Classifier
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Support Vectors with Large Margin
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In equations

e The training set is a finite set of n data/class pairs:

T = {(X17y1)7 Ceey (XN,YN)}a

where x; € R? and y; € {—1,1}.

e We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w,b) € R? x R such that:

wix, +b>0 ify, =1,
wix; +b<0 ify,=—1.
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How to find the largest separating hyperplane?

For the linear classifier f(x) = w!x + b consider the interstice defined by the
hyperplanes

o f(x)=wlx+b=+1
e f(x)=wlx+b=-1

A
X+b=0
WX\\A
\

O
O

O w.x
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The margin is 2/||w/||

e Indeed, the points x; and x5 satisfy:

WTX1—|—b:O,
wlixe+b=1.

e By subtracting we get w! (xy — x;) = 1, and therefore:

2
v = 2||x2 — x| = Tl

where 7 is the margin.
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All training points should be on the appropriate side

e For positive examples (y; = 1) this means:

wix, +b>1

e For negative examples (y; = —1) this means:

wix,+b< —1

e in both cases:
Vi=1,...,n, yz-(WTxi—kb)Zl
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Finding the optimal hyperplane

e Find (w,b) which minimize:

[[w][*

under the constraints:
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Vi=1,...,n, yi(wai+b)—1ZO.

This is a classical quadratic program on R4+!
linear constraints - quadratic objective
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Lagrangian

e In order to minimize: |
1w

under the constraints:

Vi=1,...,n, yi(WTXiﬁ—b)—lZO.

e introduce one dual variable «; for each constraint,

e namely, for each training point. The Lagrangian is, for a > 0,

1 n
L(w,b,a) = 5\\WH2 ) oy (yi (W' +b) — 1) .

1=1
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The Lagrange dual function

gla)= _inf {éw =3 o (s (WP ) - 1)}

weR? beR ,
1=1

is only defined when
W = Z a;yiX;, ( derivating w.r.t w) (%)
i=1
0= Z a;y;, (derivating w.r.t b) €
i=1

substituting (x) in g, and using (x%) as a constraint, get the dual function g(«).
e To solve the dual problem, maximize g w.r.t. a.

e Strong duality holds. KKT gives us «;(y; (WTXi + b) — 1) =0, either a; =0
or y; (WTX,L- + b) = 1.

e «; # 0 only for points on the support hyperplanes {(x,y)|y;(w!x; +b) = 1}.

VNU June 12-17 26



Dual optimum

The dual problem is thus

maximize g(a) =>1 , a; — %szzl QY Y X)X
such that ar0,> "  ay; =0.

This is a quadratic program on R", with box constraints.

o™ can be found efficiently using dedicated optimization softwares

VNU June 12-17
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Recovering the optimal hyperplane

e Once a* is found, we recover (w?,b*) corresponding to the optimal
hyperplane.

o wl isgiven by w! =37 ya;x],

e b* is given by the conditions on the support vectors a; > 0, y;(wlx; +b) = 1,

1
b* — —— : T . Ty
2 (Yizr{l,102>0(w Xz> * yz:rfllagé(i>0(w XZ))

e the decision function is therefore:

f*(x) =wlx 4 b*

— Z yz-ozz-XZ-TX + b*.
i=1

e Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors

29



What happens when the data is not linearly separable?
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Soft-margin SVM

e Find a trade-off between large margin and few errors.

e Mathematically:

m}n { ! + C' % errors(f)}

margin( f)

e (' is a parameter

VNU June 12-17
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Soft-margin SVM formulation
e The margin of a labeled point (x,y) is
margin(x,y) =y (WTX — b)

e [he error is

o 0 if margin(x,y) > 1,
o 1 — margin(x,y) otherwise.

e The soft margin SVM solves:

: 2 1
E 1 . .
mll?{HWH —|—C" 1maX{0, Vi (W XZ—|—b)}

e c(u,y) =max{0,1 —yu} is known as the hinge loss.

o ¢(wlx;+b,y;) associates a mistake cost to the decision w,b for example x;.
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Dual formulation of soft-margin SVM

e The soft margin SVM program
mm{HWH2 + C’Zmax{() 1—y; (wix; +b)}
=1

can be rewritten as

minimize [wl?+C > &
such that y; (wix; +b) >1—¢;

e In that case the dual function

Zaz -3 Z Q; a]YijX Xj;

1,7=1

which is finite under the constraints:

0<y<C, fori=1,...,n
2?2104@'3’@':0-
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Interpretation: bounded and unbounded support vectors
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

x1 X12
5 ° 0 e
O o © _0
O O O
O © i
O o'sle O

O X2 ° O O OO
O o

O .“ ® %OOO X22

O O

O O

Let ¢(x) = (z%,23)’, w = (1,1) and b = 1. Then the decision function is:

f(x) =a1+a;— R = (w,6(x)) +D,
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Kernel trick for SVM'’s

e use a mapping ¢ from X to a feature space,

e which corresponds to the kernel k:
vx,x € X, k(x,x') = (6(x),d(x'))

2
1

o Example: if ¢(x) = ¢ ([ZD = [i%] then

k(x,x') = (6(x),¢(x') ) = (21)*(2))” + (22)*(25)".

VNU June 12-17
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Training a SVM in the feature space

Replace each x’x’ in the SVM algorithm by (¢(x), ¢(x)) = k(x,x’)

e The dual problem is to maximize
n 1 n
gla) = Z Qi — 2 Z aioyiysk (Xi, %5),
i=1 ij=1
under the constraints:

OSO&@SC, forz':l,...,n
Z?Zl&iinO.

e [ he decision function becomes:

F(x) = (w, ¢(x)) + "

= Z yiaik (x5, x) 4 b*.

1=1

VNU June 12-17
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The kernel trick

e The explicit computation of ¢(x) is not necessary. The kernel k(x,x’) is
enough.

e The SVM optimization for o works implicitly in the feature space.
e The SVM is a kernel algorithm: only need to input K and y:
maximize g(a) =a’l— 1ol (y"Ky)a

suchthat 0<a; <C, fori=1,...,n
i1 ouyi = 0.

e in the end the solution f(x) = >, yia;k(xi,x) + b.
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Kernel example: polynomial kernel

o For x = (z1,22) " € R?, let ¢(x) = (22, 22129, 22) € R?:

/ 2 12 !l ! 2 12
K(x,x") = x{z7 + 2x10207 05 + 2525
/ /2
= {z12] + T2}

— {XTXI}2 .

x1
P o
o

ST
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Some demonstrations using Matlab

e playing with a few kernels and a few points

0.6
0.4

0.2

feature y
o

feature x
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SVM'’s: a particular case of a more general
framework, penalized estimation
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Empirical Risk Minimization

e Starting with {(x1,y1), -, (Xn,yn)}, n couples of X x Y,
e A class of functions F,

e A cost function ¢: Y x ), ¢ > 0, which penalizes discrepancies (hinge, least
squares etc.)

e find a function which minimizes

and use this f as a decision function.
e As usual in minimizations, we like:

o Convex problems, unique minimizers
o Stable solutions numerically.

VNU June 12-17
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When X = R4 Y =R,

Linear least squares

F={{x+ BTx+b,8€RLb € R}, e(y1,y2) = ||ly1 — Y2||2'

The problem is known as regression with the least squares criterion.

In this case, the minimizer

1
argmm—ZHf(xi) - YZ'HQ
1=1

fer MN-°—

= argmin — Z

n

1

QERd,bER n i=1

IS unique assuming n > d and no degeneracy.

Why?

1 1
R (b,8) = =3 187 +b—yill* =~ X7 [3] ~ o
1=1

Is convex, where X =

VNU June 12-17
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1

Xn

€ R+1Xn gnd y =

Y1

Yn

18" x; + b — il

c R"™.
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Linear least squares
Notice that

Rv.8) = (1817 X7 [4] - 207X 3] + i)

Let us take the gradient of that function

nVR=2XX"[}] —2Xy

Hence this gradient is zero for [ 3] = (X X)Xy

XX7T e S%. This works if XX7T € R is invertible, that is XX € S" .

Remark:
[ n nriy MmN -+ N4 |
nil T
T _ — _ | nu
XX = n:xg XX?E N [n,u XXT]
i nxy |

where X is simply the d X n sample matrix without the constant 1.

VNU June 12-17
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Example in R?

e Sample of cars: = desribes weight and horsepower of a car.

e y is the miles-per-gallon : high is eco-friendly, low is bad.

45—
404
35
304

254

MPG

204

154

AN \\\\
N
N

AN PY
\\\\§§§\«§\\

N

104

gl 300
1000

Horsepower

Weight

. . b §7.7694} b
e The hyperplane fits the data quite well, [5] [_8:8238 [ﬁ]
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Linear least-squares is not the ideal tool though...

e What happens when d > n? (X X?) is no longer invertible...

o high-dimensional data in genomics,
o images analysis (e.g.lots of features)

e What happens when (X X7) is badly conditioned (f\‘mm(é‘f;;)) ~ 0)7?

o if Amin(XXT) = 1e — 10, Apax (X XT)71) = 1e10!!
o Very bad numerical stability of the solution...

e When d > n, we might want to do variable selection,

o i.e.pick a subset d’ of the d variables which is relevant to predict y.

o i.e.favor vectors (3 such that |||l = card §; # 0 is small.

VNU June 12-17
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Penalized Least-Squares

e For all these problems, there is an appropriate penalization:

n

A 1
(8,b) = argmin = [|87x; +b—yi||> + A (8, )]
BERd,bERn i—1

o we recover least-square regression when \ = (;
o ridge regression when A > 0 and ||(3,0)| = ||(8,b)]|53 = b* + (D

b T SRR
[6]:<XX JM[EO"‘OD Xy
00 O 1

o the lasso when A > 0 and ||(5,b)|| = ||(8,b)|lx = |b| + >_,—115:l;

VNU June 12-17
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What about the case where linearity does not work?

e Many examples show that life is not always linear... kernels at the rescue.

e Let us take a further look at 8 = (X X1)~1Xy.
e For any new point, 57 x plays the same role as w’x in the SVM.

e We consider a new point x € R? with the constant 1, i.e. x « [1].

o b, ]x =xI'(XXT + X)) 1 Xy.

VNU June 12-17
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Kernel ridge regression

e A simple inversion trick states that (X X1 + A\I;) 1 Xy = X(\I,, + XTX)™ 1y

- 4T
xTxl
T

o Hence b, " ]x =x" XA, + X' X) "ty = | * 2| (AL, + [x]x;]) 'y

- XTXd -

e Bottom line: we have shown how to compute a regression tool which only
depends on dot-products.

e Dot-products can be replaced by kernels!
k(X,Xl)

f(x) = [“Xz"”] (AL, + [k(xi,%,)]) 1y

k(x,xq)
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Kernel methods

e Many other standard linear algorithms,

@)
@)
@)
@)

VNU June 12-17

Principal Component Analysis,

Canonical Correlation Analysis,

Fisher Discriminant analysis,

etc.can be modified to incorporate kernel similarities.

Algorithms based on kernels are known as kernel methods.
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Kernel Methods

A reasonably large academic subfield

e \Widespread popularity in machine learning now

Automatic
for Remote Sensing Speech
Data Analysis and Speaker

Recognition e
Large Margin ith Kernels Kernel Mothods
and Kern 7 in Computational Bislogy

e Gained momentum in the late 90's with the support vector machine,
e Rooted in much older maths.
e Kernel methods are a pluridisciplinary field, publications appearing in

o computer science (nips, journ. of machine learning, ICML..),
o statistics and functional analysis (annals of statistics..),

o optimization (Mathematical Programming..),

o Different application subfields (Neural Computation..)
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Kernel Methods

e Standard text-books:

o Introduction [SS02] . -

o More about kernels [STCO04]
=

o More learning theory [SC08]

o First chapters [STV04] E=
o “Mathematical” perspective [BTA03]|. The real deal: [BCR84].

e Some short surveys,

o journal papers [HHS08], [MMR+01]
o a survey on my webpage (local copy, not arxiv): key to all citations!

e On the web:

o Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, Stéphane Canu.

VNU June 12-17
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Some terminology

Etymology : from old english cyrnel, diminutive of corn (seed)

the word kernel appears in different different contexts...

e The /linux kernel...

e Kernel of a linear operator of X': ker(L) = {z € X|L(x) = 0}.

e Kernel of a matrix in R%%?, j.e. its nullspace {x € R Ax = 0}.

e In set theory, for a function f: X — ), ker(f) = {(zc x’)\ f(x) = f(z"}.
o Kernel of an integral transform T', T'f (u ft t)dt

e Smoothing kernel, a function k& > 0, k(u) = k(—u), ffooo k(u)du = 1.

T 2
o K(t,z,y)= W -5 solves heat equation K(t,xz,y) = A K(t,x,y)

sets, subspaces, one-variable, two-variables, three-variables function...
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Moral of the story

No need to look for a common or primitive meaning

e Kernel is just a word mathematicians fancy (unfortunately!)

e People enjoy it because of its vague “core” meaning.

e Don't feel you have missed something if you do not see the connection
between different kernel objects in mathematics. There might be none...

e Will mention some links during the lecture between different definitions.
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What is a kernel

In the context of this lecture...

e A kernel k is a function

k: XA XX R
(X7Y) - k(X7Y)

e which compares two objects of a space X, e.g....

o strings, texts and sequences,
o images, audio and video feeds, g} @ *“i

;
. . L
o graphs, interaction networks and 3D structures H

Ix

e whatever actually... time-series of graphs of images? graphs of texts?...
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Fundamental properties of a kernel

symmetric

k(x,y) = k(y,x).

positive-(semi)definite

for any finite family of points x1,--- ,x, of X, the matrix
k(x1,x1)  k(x1,%x2) - k(xi,x;) - k(x1,%x,)]
k(x2,%1) k(x2,x2) -+ k(X2,%x;) -+ k(x2,Xp)
K= k(xz-:, X1) k(x;, Xg) - k(xz-:, X;) : k’(XQ:, Xn) =0
_k(an:, X1) k(anja X3) - ' k(Xr:, X;) ' k(Xn:v Xn)_

is positive semidefinite (has a nonnegative spectrum).

K is often called the Gram matrix of {x1,--- ,x,} using k

VNU June 12-17
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What can we do with a kernel?
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The setting

e Pretty simple setting: a set of objects x1,--- ,x,, of X
e Sometimes additional information on these objects

o labels y; € {—1,1} or {1,--- , #(classes)},
o scalar values y; € R,
o associated object y; € VY

e A kernel k: X x X — R.

VNU June 12-17
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

e The functional perspective: represent points as functions.
e The new or alternative dot-product perspective.
e Nonlinearity : linear combination of kernel evaluations.

e Summary of a sample through its kernel matrix.
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Represent any point in X' as a function

For every x, the map
x — k(x,-)
associates to x a function k(x,-) from X to R.

e Suppose we have a kernel k£ on bird images

e Suppose for instance

VNU June 12-17
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Represent any point in X’ as a function

e \We examine one image in particular: ’

e With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R? for simplicity.

schematic plot of & ( Y ).
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Represent any point in X’ as a function

e |If the bird example was confusing...

/ / 2
» k(15 [3]) = (=01 [5] + 3)
e From a point in R? to a function defined over R?.

(@x+L5y) + .3

L7777

77

2717777

2,51

LT 77
77

L7277

1.5-

2.5

e We assume implicitly that the functional representation will be more useful

than the original representation.

66
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Dot-product perspective

e Suppose X = R4,
e The simplest kernel: k(x,y) = x'y.

e For a data sample X = {x1,X2, -+ ,X,}.

e In matrix form, X = [x; x5 - - Xx,| € R¥X™

e In standard linear algebra, the Gram matrix of X is

K = [XT = XTXx.

1 %3] 1 <ij<n
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Dot-product perspective

e Consider a different kernel kg(x,y) = exp (—M)

o

Kg = [kG(Xian)}lgi,jgn'

e obviously x! x; # ka(x;,x;).
e is there a representation & € R*’ for each point such that e = ka(xy, x4)?

e Linear algebra to the rescue: K = PDPT, U = PvVDPT, hence K = UTU,

providing U = [& & -+ &, | € R™*™,
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Dot-product perspective

e |n summary, we have defined n vectors such that
ka(xi,x5)] = [€¢]

e Great: for each x; we have a vector representation &;.
e Problem:

o this representation depends explicitly on the sample X.
o For a new x,,11, difficult to find &,+1 such that & ,&; = ka(xn+1,x;).

e We will see that there exists a mapping ¢, such that

o ¢: X — H where H is a dot-product space,
o which gives a dot product representation for k,

ka(x,y) = (¢(x),0(y) ).

for all points (x,y)...

VNU June 12-17
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Decision functions as linear combination of kernel evaluations

e Linear decisions functions are a major tool in statistics, that is functions

f(x)=8"x+fo.
e Implicitly, a point x is processed depending on its characteristics z;,
d
f(x) = Zﬂiﬂfz‘ + Bo.
i=1

the free parameters are scalars Bg, 315+ , B4.

e Kernel methods yield candidate decision functions
f(x) =) ajk(x;,x) + a.
j=1

the free parameters are scalars o, v, ¢+ , y,.

VNU June 12-17
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Decision functions as linear combination of kernel evaluations

database {x;,7 = 1,

1 87 Xz:

kernel definition

f(x) =

weights a estimated
with a kernel machine

e f is any predictive function of interest of a new point x.

e Weights «v are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

e Imagine a little task: you have read 100 novels so far.

e You would like to know whether you will enjoy reading a new novel.

e A few options:

o read the book...
o have friends read it for you, read reviews.
o try to guess, based on the novels you read, if you will like it

VNU June 12-17
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The Gram matrix perspective

Two distinct approaches

e Define what features can characterize a book.

o Map each book in the library onto vectors

tth\ "\1' Li — X = _i;_
&

typically the x;'s can describe...

> F£ pages, language, year 1st published, country,
> coordinates of the main action, keyword counts,
> author’s prizes, popularity, booksellers ranking

e Challenge: find a decision function using 100 ratings and features.
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The Gram matrix perspective

e Define what makes two novels similar,

o Define a kernel k£ which quantifies novel similarities.
o Map the library onto a Gram matrix

k(blabl) k(blabQ) U k(blabIOO) ]
— k(b27b1) k(b27b2) o k(b27b100)
| E(bn,b1)  k(bn,b2) -+ K(b1oo, b1oo) |

e Challenge: find a decision function that takes this 100 x 100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

e with the features approach, the prediction can be rephrased as what are the

features of this new book? what features have | found in the past that were
good indicators of my taste?

e with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did | find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.
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The Gram matrix perspective

In summary

e A feature based analysis of a data-driven problem:

objects 01,--- ,0, —— featurevectors X = |x; X9 -+ X,| € RAxmn

e A similarity based analysis of a data driven problem:

k(o1,01) k(o1,02) -+ k(o01,0p)
objects 01, -+ ,0, — Gram K = ]‘3(02:, 01) k(02:, 02) k(Oz:, On) c RnXn
\k(on,01) k(on,02) -+ k(on,0n))

e Some parallels (can define K = X7 X or X = /K or Cholesky) but...

Algorithms use either features or (kernel) similarities.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset X3
L BNy
X
X9 .
X
x 5 Krs 5, kernel matrix o

N

convex optimization

and Convex optimization (thanks to psdness of K, more later) to output the «'s.
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Mathematical Considerations

different definitions and properties of the same mathematical object
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79



An intuitive perspective: Feature maps

Theorem 1. A function k on X X X 1s a positive definite kernel if and only if
there exists a set T and a mapping ¢ from X to I*(T), the set of real
sequences {us,t € T} such that Y, o |u]® < oo, where

V(x,y) € X x X, k(x,y) =) ¢(x) = {(o(x), d(¥))i2(x)

te’T

e A very popular perspective in the machine learning world.

e Equivalent to previous definitions, less stressed in the RHKS literature.

X — 000 = | 600

L der
where the ¢; are a set of — possibly infinite but countable — features.
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kernels — Gram matrices

o If X = {Xi}iel In X,

KX — [k(XZ‘,Xj)] ~ 0.

7€l —

e |f one applies any transformation of K x which keeps eigenvalues nonnegative,

r(K) is a valid positive definite matrix and hence a kernel on X.
o examples: K +t(t > 0), K2, e, ete.

e in fact, if K = PAPT, any transformation that preserves the spectrum’s
non-negativity would be ok.

e Yet... this kernel is only valid on X, the sample, not the whole space X'.

Meaning somehow... Gram matrices - kernels
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positive definite kernels and distances

e Kernels are often called similarities.
e the higher k(x,y), the more similar x and y.

e With distances, the lower d(x,y), the closer x and y.

e Many distances exist in the literature. Can they be used to define kernels?

what is the link between kernels and distances?

5
high similarity = small distance

. 2 2
o At least true for the Gaussian kernel k(x,y) = e~ Ix=vlI7/207

e Important theorems taken from [BCR84].
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Distances

Definition 1 (Distances, or metrics). A nonnegative-valued function d on
X x X is a distance if it satisfies, Vx,y,z € X:

(i) d(x,y) >0, and d(x,y) = 0 if and only if x =y (non-degeneracy)
(ii) d(x,y) =d(y,x) (symmetry),
(1i1) d(x,z) < d(x,y) + d(y,z) (triangle inequality)

e Very simple example: if X' is a Hilbert space, ||x — y|| is a distance. It is
usually called a... Hilbertian distance.

e By extension, any distance d(x,y) which can be written as ||¢(x) — ¢(y)]|
where ¢ maps X to any Hilbert space is called a Hilbertian metric.

e Useful. To build Gaussian kernel, Laplace kernels k(x,y) = e tIx=vll

e Yet does not suffice:
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the missing link: negative definite kernels

Definition 2 (Negative Definite Kernels). A symmetric function ¢ : X x X — R
is a negative definite (n.d.) kernel on X if

n

> cici v (zi,a5) <0 (1)

ij=1
holds for any n € N, x1,..., 2, € X and cy...,c, € R such that Z?Ilcz- = 0.
e Example ¢(x,y) = [[x — y|*.

o prove by decomposing into ||x;]|? + ||x;||* — 2(x;, x; )

e NV(X) is also a closed convex cone.

important example: k is p.d. = —Fk is n.d.
Converse completely false.
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negative definite kernels & positive definite kernels

A first link between these two kernels:

Proposition 2. Let xg € X and let ¢ : X x X — R be a symmetric kernel. Let

def

@(Xa Y) — ¢(Xa ZCO) + ¢(Y7 ZCO) _ ¢(Xa Y) - ¢(I‘07 ZCO)'

Then k 1is positive definite < 1) 1s negative definite.

e Example: ||x — zo||? + ||y — xo||* — [[x — y||* is a p.d. kernel.
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Proof.

mn
e = Forxy, -+ ,xp,and ¢y, -+ ,cpst. Y .16 =0,
mn n
g cicip(xi,Xj) = — E cici(x4,%x5) > 0.
i,j=1 i,7=1
mn
o & Forxy, - ,xpandcy, - ,cp, letcg=—> .. Set xg = xp. Then

0> Z cici (X, X;)

2,7=0

3 ciegilnxy) + 3 ik 0) + 3 cocyoon ) + @bz o).
1,7=1 i=1 j=1

- Z W(Xz’, -TO) + w(xﬁ ZEO) o ¢(X¢ay3') - w(ﬂjo,ilj‘o)] = Z Cz'ngO(XZ',Xj).
ny=1 ij=1
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negative definite kernels & positive definite kernels

Proposition 3. For a p.d. kernel k > 0 on X x X, the following conditions are
equivalent

(i) —logk € N(X),
(i1) k' is positive definite for all t > 0.

If k satisfies either, k is said to be infinitely divisible,

Proof.

e —logk =1lim, . n(l— k%) which is the limit of a series of n.d. kernels if (%)
is true, hence (ii) = (7).

e conversely, if —logk € N(X) we use Proposition Pl Writing ¢ = —log k and
choosing xg € X we have

kt — e—tw(X,Y) — etw(anajO)etQO(XQ’)e_tw(xamO)e_tlﬂb(Y7m0) e P(X)
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negative definite kernels: (Hilbertian distance)? + ...
Proposition 4. Let 1) : X X X be a n.d. kernel. Then there is a Hilbert space
H and a mapping ¢ from X to H such that

(x,y) = [lo(x) — o(y)|I* + F(x) + f(y), (2)

where f: X — R. IfyY(x,x) =0 for all x € X then f can be chosen as zero. If
the set {(x,y)|¥(x,y) = 0} is exactly {(x,x),x € X'} then /¢ is a Hilbertian
distance.

Proof. Fix xg and define

o(,3) 16, 0) + (3,0) — $(x,3) — Yo, 70)].

By Proposition 2 ¢ is p.d. hence there is a RKHS and mapping ¢ such that
p(x,y) = (¢(x),¢(y) ). Hence

lo(x) — d(¥)|I* = (x,x) + (¥, y) — 20(x,y)

— (xy) p(x, %) —g V(y.y)
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distances & negative definite kernels

e whenever a n.d. kernel

o vanishes on the diagonal, i.e. on {(x,x),xz € X'},
o is 0 only on the diagonal, to ensure non-degeneracy,

— +/1) is a Hilbertian distance for X.

e More generally, for a n.d. kernel 7,

\/@D(X,y) _Yxx) $y.y) is a (pseudo)metric for X .

e On the contrary, to each distance does not always correspond a n.d. kernel
(Monge-Kantorovich distance, edit-distance etc..)
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In Summary...

e Set of distances on X is D(X), Negative definite kernels A/(X), positive and
infinitely divisible positive kernels P(X) and P (X) respectively.
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Some final remarks on N (X) and P(X)

e N(X) is a cone. Additionally,

o ifp e N(X),VeeR, ¢+ ceNX).
o if (x,x) >0 forall z e X, p* € N(X) for 0 < a < 1 since

o 0% > —a—1 =ty
Y _F(l—a)/o t (1 —e *)dt

and log(1 + ) € N(X) since

t

log(1+v) = /000(1 — e_w)%dt.

o if ¢ > 0, then log(vy) € N (X) since

log(v) = lim log (w + 1) = lim log (1 + cyp) — logec

C— 00 C— OO
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Some final remarks on D(X), N(X),P(X)

e P(X) is a cone. Additionally,

o The pointwise product kiko of two p.d. kernels if a p.d. kernel
o k" € P(X) forn € IN. (k+¢)" too...as well as exp(k) € P(X):

ookt

> exp(k) = Zizoﬁ' a limit of p.d. kernels.
> exp(k) = exp(—(—k)) where —k € N (X).

e The sum of two infinitely divisible kernels is not necessarily infinitely divisible.

o —log ki and —log ko might be in N(X), but —log(ki + k2)?...
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Intuitively an important issue...

Remember that kernel methods drop all previous information

dataset X3
L BVaSY
X
X9 .
X
x 5 Krs 5, kernel matrix o

N

convex optimization

to proceed exclusively with K.

if the kernel K is poorly informative, the optimization cannot be very useful...
it is therefore crucial that the kernel quantifies noteworthy similarities.
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Kernels on vectors

(relatively) easy case: we are only given feature vectors,
with no access to the original data.

e Reminder (copy paste of previous slide!): for a family of kernels k1, - - -

o The sum > " Ak; is p.d., given A1,..., A, >0
o The product ki*--- k% is p.d., given ay,...,a, € N
o lim, . ky is p.d. (if the limit exists!).

e Using these properties we can prove the p.d. of

o the polynomial kernel k,(z,y) = ({(x,y) +b)¢, b>0,d €N,

2
_lx=yl

o the Gaussian kernel k,(z,y) =e 202 which can be rewritten as

VNU June 12-17

= Iyl? = (x,y )
ko(z,y) = [6 20% € 2"2] ' [z; il
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Kernels on vectors

o the Laplace kernels, using some n.d. kernel weaponry,
ka(z,y) =e MY 0 <X 0<a<2
o the all-subset Gaussian kernel in R¢,
d
k(e,y) =] (1 X ae—b(xz-—yn?) - ¥ o) g=bllxr—y1l*
1=1 IC{l, 7d}
o A variation on the Gaussian kernel: Mahalanobis kernel,

ks(z,y) = e ¥ ET6y),

idea: correct for discrepancies between the magnitudes and correlations of
different variables.

o Usually X is the empirical covariance matrix of a sample of points.
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Kernels on vectors

e These kernels can be seen as meta-kernels which can use any feature
representation.

e Example: Gaussian kernel of Gaussian kernel feature maps,

= lly=)? Coe | 252
kGQ(X:Y):kG e 2% ,e 202 = e N2

e Not sure this is very useful though!

e Indeed, the real challenge is not to define funky kernels,

the challenge is to tune the parameters b, d, o, X..
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Kernels on structured objects

e Structured objects?

o texts, webpages, documents

o sounds, speech, music,

o images, video segments, movies,

o 3d structures, sequences, trees, graphs

e Structured objects means

o objects with a tricky structure,

o which cannot be simply embedded in a vector space of small dimensionality,
o without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space
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Vectors in R’} and Histograms

e A powerful and popular feature representation for structured objects:
histograms of smaller building-blocks of the object:

£ Color Inspector 3D (¥2.0) /images/baboon400.jpg

File. Options Help

Color Space: . Displ

160000 Pixels, 271 Colors Position ®: 210w 222  Color: RGB(248, 68, 38) Frequency: 3868 {2.4%)

| = Humber of Color Cells = L 1 LuT

te_[Frequency [%

3 000z

3 0.002

08 25 0018
98 3 132 0.083
58 B3 180 0100

48 a8 T8 0174
98 128 54 0034
a8 a bil} 0035

1] 1R niny

Brightness { +0) Contrast (x 1.0} Saturation (x1.0) Color Rotation (0°) Perspective Srale

e histograms are simple instances of probability measures,

o nonnegative coordinates, sum up to 1.
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Standard metrics for Histograms

Information geometry, introduced yesterday, studies distances between densities.

e Reference : [ANO1]

e An abridged bestiary of negative definite distances on the probability
simplex:

Vip(0,60") =h (
/ ((92-—(9,’6-)2
¢X2(979):zi: 91_1_9; ) wTVHQ Z‘H

¢H299 Zl\/7 \/7|2 ¢H1(979):Z|\/97i_\/97‘|'

0+0\ h()+ h(0)
2 >_ 2

Y

e Recover kernels through

k(0,0 =e ™, t>0
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Information Diffusion Kernel [LL05,ZLC05]

e Solve the heat equation on the multinomial manifold, using the Fisher metric

e Approximate the solution with
by, (0,0) = = arceos*(VEVE)
d\"? ’

e arccos? is the squared geodesic distance between 6 and ¢’ as elements from
the unit sphere (6; — /0;).

e In [ZLCO5]: the use of

kEd(H; 9/) _ 6—%arccos(\/§-\/@)’

Is advocated.

2

e the geodesic distance is a n.d. kernel on the whole sphere (arccos” is not).
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Transportation Metrics for Histograms

Beyond information geometry, the family of transportation distances.

e Suppose r = (1, - ,74) and ¢ = (c1,- -+, cq) are two histograms in R’!.

e Define the set of transportations

U(r,c) ={F e RY**|F1=r,F'1 =c}.

e Transportation distances between r and c:

deost(rc) = . é%i(? o cost(F).

Monge-Kantorovich: cost(F') = (F, D) where D is a n.d. matrix.

® d.s is not n.d. in the general case.

kcost(rc) :/ 6_COSt(F)°
FeU(r,c)

e works when cost = 0: the volume of U(r,c) is a p.d. kernel of r and c. [Cut07]

e Alternatives:
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Statistical Modeling and Kernels

Histograms cannot always summarize efficiently the structures of X

e Statistical models of complex objects provide richer explanations:

o Hidden Markov Models for sequences and time-series,
o VAR, VARMA, ARIMA etc. models for time-series,

o Branching processes for trees and graphs
o Random Markov Fields for images etc.

e {x1, -+ ,X,} are interpreted as i.i.d realizations of one or many densities on X

e These densities belong to a model {py,0 € ® C R}

Can we use generative (statistical) models
in
discriminative (kernel and metric based) methods?
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Fisher Kernel

e The Fisher kernel [JH99] between two elements x,y of X' is

) TJT1 81np9(y)
2] 2 90

i) = (Dot

o 6 has been selected using sample data (e.g. MLE),
o ng is the Fisher information matrix computed in 6.

;)

e The statistical model {pg, 0 € O} provides:

o finite dimensional features through the score vectors,
o A Mahalanobis metric associated with these vectors through Jj;.

e Alternative formulation:

ko (2, y) = 6—0_—12(% lnpe(x)—Vélnpe(Y))TJé_l(Vé In pg(x)—V 5 In po(y))
o\t ) = ,

with the meta-kernel idea.
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Fisher Kernel Extended [TKR+02,5SG02]

e Minor extensions, useful for binary classification:
e Estimate él and ég for each class respectively,

e consider the score vector of the likelihood ratio

H1n P (%)

Po, (%)

G5, 5. P X L
91,02 ov 9=(01,05) |

where ¥ = (01, 0) is in ©2,

e Use this logratio’s score vector to propose instead the kernel

(x,y) = ¢y, 5, (x) D9, 4. (¥)-
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Mutual Information Kernel: densities as feature extractors

e More bayesian flavor — drops maximum-likelihood estimation of 6. [See(02]

e Instead, use prior knowledge on {pg, 0 € O} through a density w on ©

e Mutual information kernel k_:

Fu(x,y) = /@ po(x)pa(y) w(db).

e The feature maps 0 < py(x) < 1 and 0 < py(y) < 1.

e Explicit computations sometimes possible, namely conjugate priors.

k., is big whenever many common densities py
score high probabilities for both x and y

e Example: context-tree kernel for strings.
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Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximum a posteriori approximation of the Ml kernel.

e What? How? by setting the prior w to the multivariate Gaussian density

an approximation known as Laplace’s method,

e Writing 911 po ()
n pg(x
P(r) = Vylnpe(z) = ;99 ‘é

we get

A

log po() ~ log py() + (x)(0 — ).
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Mutual Information Kernel & Fisher Kernels

e Using N (0, Jé_l) for w yields

k(z,y) = /@ po(x)po(y) w(d0),

~C / log p; (@) +0 ()T (0-0) Jlog ps(y)+@(y) " (6-6) —(6—0)"J;(0-0) 49
©

Tin A N 17.00_p
:Cpé(:c)pé(y)/ e(P@)+2())" (6-0)+(0-0)"J;(6-0) 49
S

_ C/pé(l,)pé(y)6%<<1><x>+<1><y>>Tng<<I><x>+c1><y>>

e the kernel
k(x,y)

k(z,y) =
VE(z, 2)k(y,y)
is equal to the Fisher kernel in exponential form.
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Marginalized kernels - Graphs and Sequences

e Similar ideas: leverage latent variable models. [TKA02,KTI03]

e For location or time-based data,

o the probability of emission of a token x; is conditioned by

o an unobserved latent variable s; € §, where § is a finite space of possible
states.

e for observed sequences x = (x1, - ,%y), ¥ = (Y1, ,Yn), Sum over all
possible state sequences the weighted product of these probabilities:

Kry) =) > p(sle) p(s'|y) & (2, 8) , (y, )

seS s’'eS

e closed form computations exist for graphs & sequences.
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Kernels on MLE parameters

e Use model directly to extract a single representation from observed points:

A A

T — 0y, y'_>0ya

through MLE for instance.

e compare x and y through a kernel kg on O,

k(z,y) = ko (fx, by).
e Bhattacharrya affinities:

ko(x,y) = /X ps, (2)"pg, (2) d2

for 3 > 0.
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