EPAT 2010

Kernel Methods

Algorithms

Marco Cuturi

EPAT'10 - M. Cuturi

Outline of the lectures

Outline

- Mathematical considerations $(\leq 80's)$
 - Reproducing Kernel Hilbert Spaces
 - \circ positive-definiteness, negative definiteness *etc.*.
 - $\circ\,$ kernels, similarities and distances
- Defining kernels
 - Standard kernels ($\leq 80's$)
 - \circ Statistical modeling & kernels (> 1998)
 - Algebraic structures and kernels
- Kernel algorithms
 - \circ supervised learning, SVM (≥ 1995)
 - \circ representer theorem
 - \circ unsupervised techniques, eigenfunctions of samples (≥ 1998)
 - density estimation and novelty detection (≥ 1999)

Kernel algorithms

algorithms which select functions with desirable properties in a RKHS algorithms which only take as inputs Gram matrices K

EPAT'10 - M. Cuturi

Regression, Classification and other Supervised Tasks

• Two associated random variables

 \circ A random variable x, taking values in \mathcal{X} ,

- \circ A random variable y, taking values in \mathcal{Y} .
- Two samples of (x, y) i.i.d. distributed from their joint law
 - $\circ \{(\mathbf{x}_1, \mathbf{y}_1), \cdots, (\mathbf{x}_n, \mathbf{y}_n)\}, n \text{ couples of } \mathcal{X} \times \mathcal{Y}.$

Challenge: **predict** y when given only x.

• In practice, find a function $\mathcal{X} \to \mathcal{Y}$ for which $f(\mathbf{x})$ is not too different from y on average.

Binary Classification

- $\mathcal{Y} = -1, 1.$
- f needs to be a functions that, given x predicts a label,

```
f: \mathcal{X} \mapsto \{0, 1\}
```

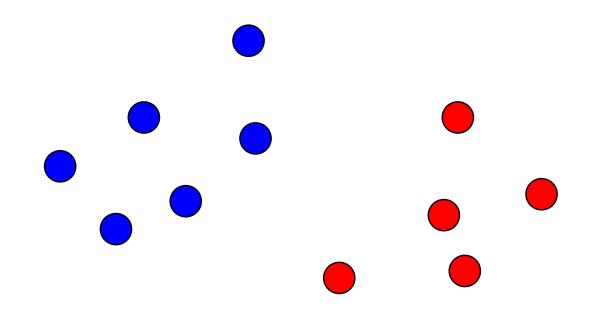
of course, many possible choices for f's shape.

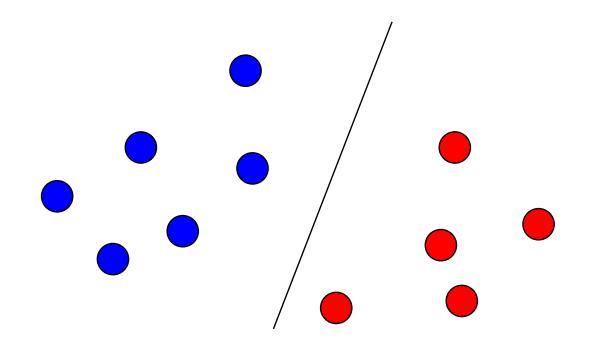
- We review here **linear** hyperplanes in $\mathcal{X} = \mathbb{R}^d$ first.
- We represent it in \mathbb{R}^2 for simplicity.

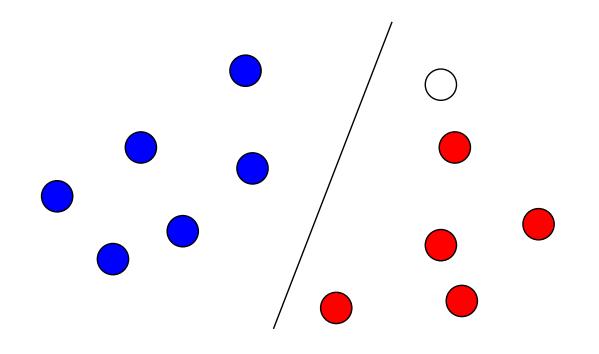
Next slides will cover an important algorithm, the **SVM** algorithm

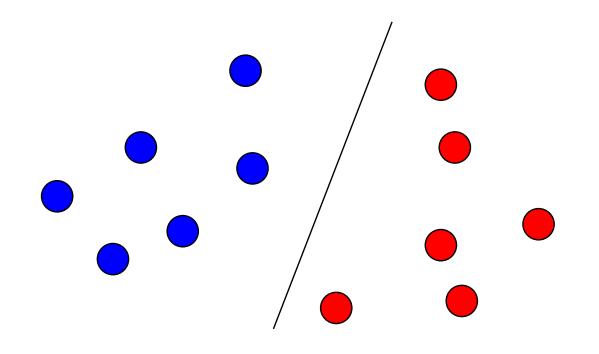
• this algorithm can be naturally expressed in terms of *kernels*. we review later other algorithms for which this is also the case.

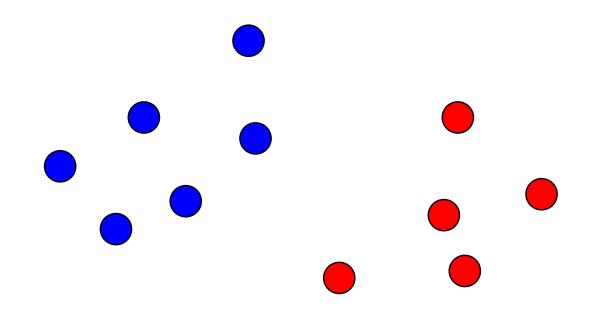
thanks to Jean-Philippe Vert for many of the following figures and slides.

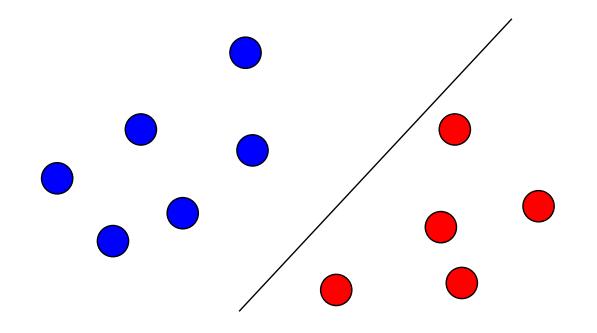


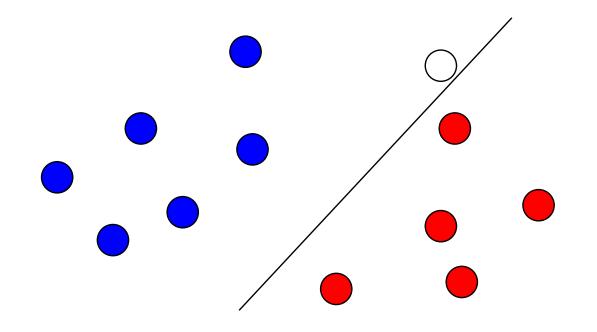


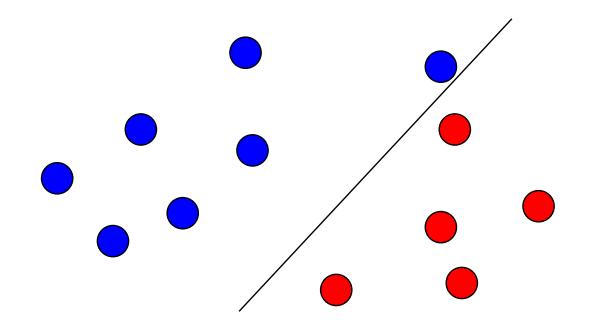




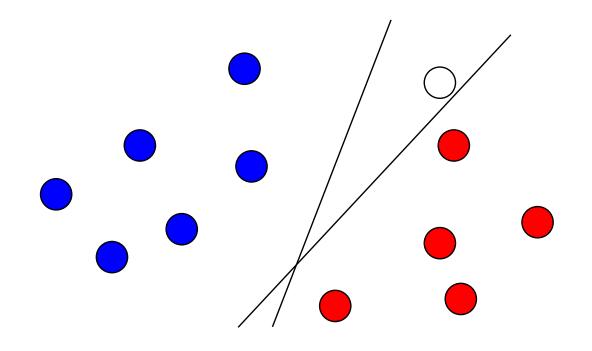


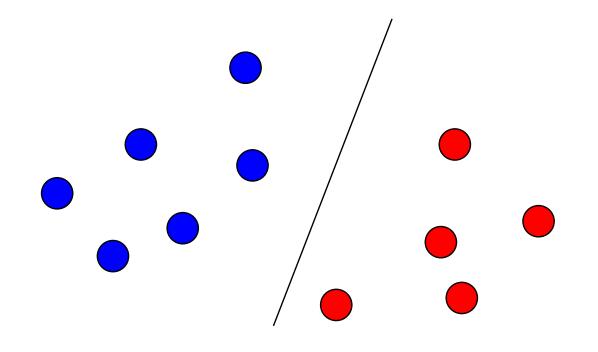


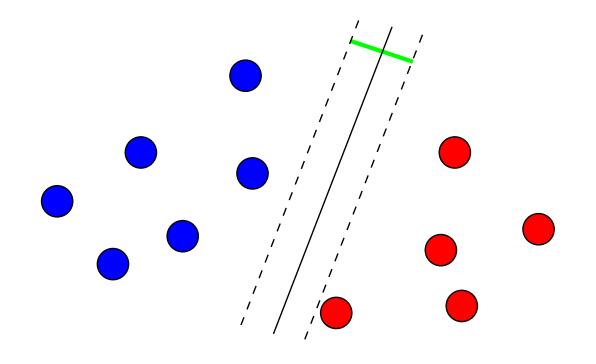


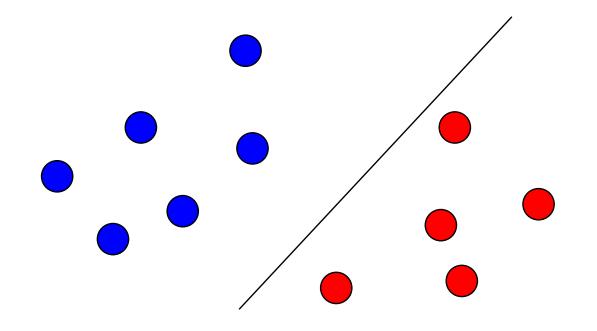


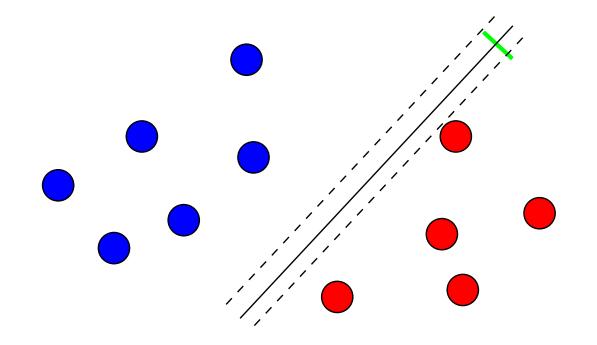
Which one is better?

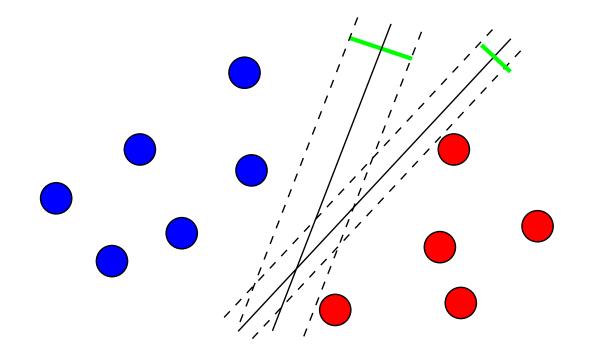




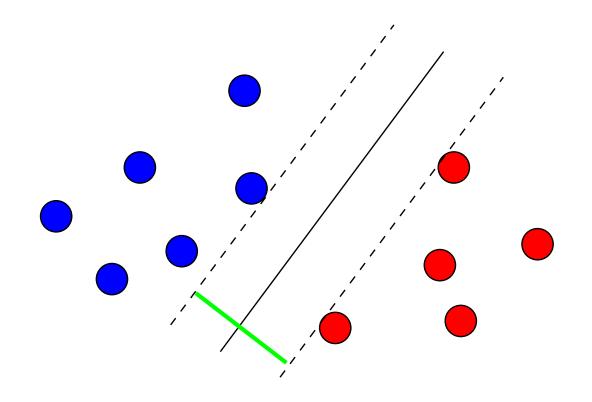




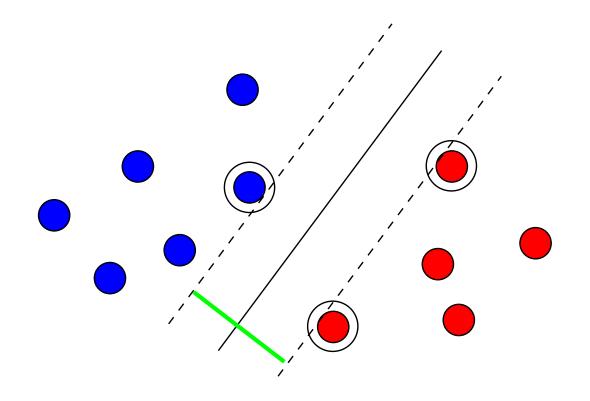




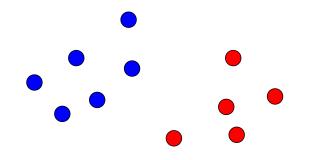
Largest Margin Linear Classifier



Support Vectors with Large Margin



In equations



• The **training set** is a finite set of *n* data/class pairs:

$$\mathcal{T} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\},\$$

where $\mathbf{x}_i \in \mathbb{R}^d$ and $\mathbf{y}_i \in \{-1, 1\}$.

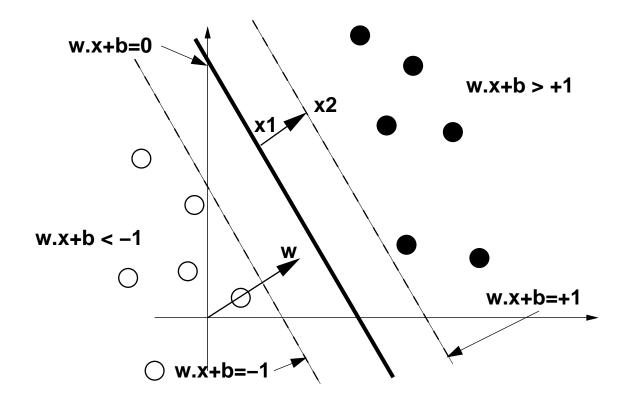
 We assume (for the moment) that the data are linearly separable, i.e., that there exists (w, b) ∈ ℝ^d × ℝ such that:

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b > 0 & \text{if } \mathbf{y}_i = 1, \\ \mathbf{w}^T \mathbf{x}_i + b < 0 & \text{if } \mathbf{y}_i = -1. \end{cases}$$

How to find the largest separating hyperplane?

For the linear classifier $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$ consider the *interstice* defined by the hyperplanes

- $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = +1$
- $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = -1$



The margin is $2/||\mathbf{w}||$

• Indeed, the points \mathbf{x}_1 and \mathbf{x}_2 satisfy:

$$\begin{cases} \mathbf{w}^T \mathbf{x}_1 + b = 0, \\ \mathbf{w}^T \mathbf{x}_2 + b = 1. \end{cases}$$

• By subtracting we get $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = 1$, and therefore:

$$\gamma = 2||\mathbf{x}_2 - \mathbf{x}_1|| = \frac{2}{||\mathbf{w}||}.$$

where γ is the margin.

All training points should be on the appropriate side

• For positive examples $(y_i = 1)$ this means:

 $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

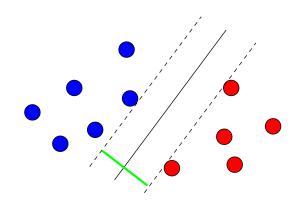
• For negative examples $(y_i = -1)$ this means:

$$\mathbf{w}^T \mathbf{x}_i + b \le -1$$

• in both cases:

$$\forall i = 1, \dots, n, \qquad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$$

Finding the optimal hyperplane



• Find (\mathbf{w}, b) which minimize:

 $||\mathbf{w}||^2$

under the constraints:

$$\forall i = 1, \dots, n, \quad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

This is a classical quadratic program on \mathbb{R}^{d+1} linear constraints - quadratic objective

Lagrangian

• In order to minimize:

$$\frac{1}{2}||\mathbf{w}||^2$$

under the constraints:

$$\forall i = 1, \dots, n, \qquad y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

- introduce one dual variable α_i for each constraint,
- namely, for each training point. The Lagrangian is, for $\alpha \succeq 0$,

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right).$$

The Lagrange dual function

$$g(\alpha) = \inf_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right) \right\}$$

is only defined when

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i \mathbf{x}_i, \quad (\text{ derivating w.r.t } \mathbf{w}) \quad (*)$$
$$0 = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i, \quad (\text{derivating w.r.t } b) \quad (**)$$

substituting (*) in g, and using (**) as a constraint, we get the dual function $g(\alpha)$.

- To compute the dual, just maximize g w.r.t. α .
- Strong duality holds. KKT gives us $\alpha_i(\mathbf{y}_i \mathbf{w}^T \mathbf{x}_i 1) = 0$, either $\alpha_i = 0$ or $\mathbf{y}_i \mathbf{w}^T \mathbf{x}_i = 1$.
- $\alpha_i \neq 0$ only for points on the support hyperplanes $\{(\mathbf{x}, \mathbf{y}) | \mathbf{y} \mathbf{w}^T \mathbf{x}_i = 1\}$.

Dual optimum

The dual problem is thus

maximize
$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

such that $\alpha \succeq 0, \sum_{i=1}^{n} \alpha_i \mathbf{y}_i = 0.$

This is a quadratic program on \mathbb{R}^n , with *box constraints*. α^* can be found efficiently using dedicated optimization softwares

Recovering the optimal hyperplane

- Once α* is found, we recover (w^T, b*) corresponding to the optimal hyperplane.
- \mathbf{w}^T is given by $\mathbf{w}^T = \sum_{i=1}^n \alpha_i \mathbf{x}_i^T$,
- b^* is given by the conditions on the support vectors $\alpha_i > 0$, $\mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$,

$$b^* = -\frac{1}{2} \left(\min_{\mathbf{y}_i = 1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) + \max_{\mathbf{y}_i = -1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) \right)$$

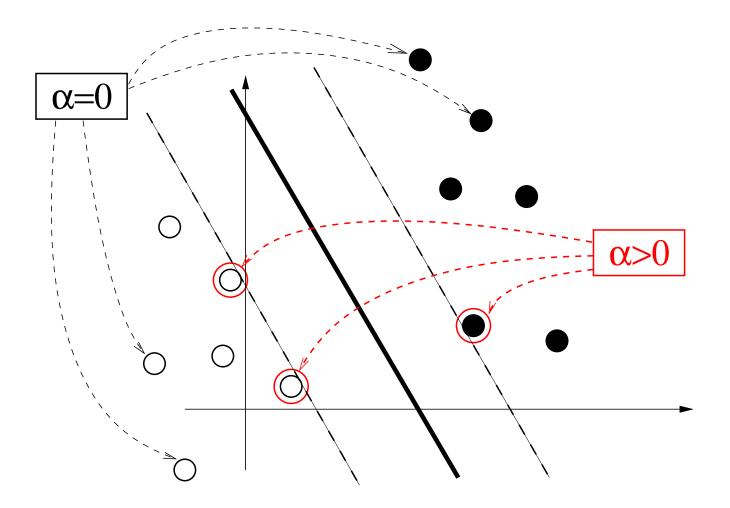
• the **decision function** is therefore:

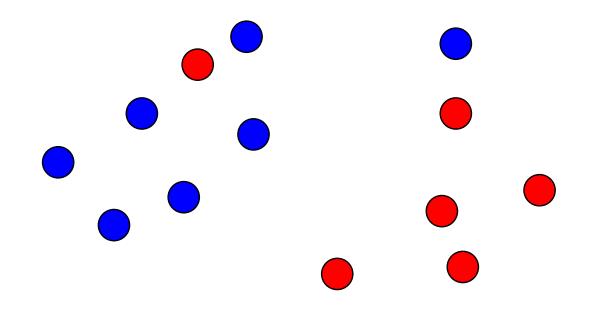
$$f^*(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b^*$$
$$= \sum_{i=1}^n \alpha_i \mathbf{x}_i^T \mathbf{x} + b^*$$

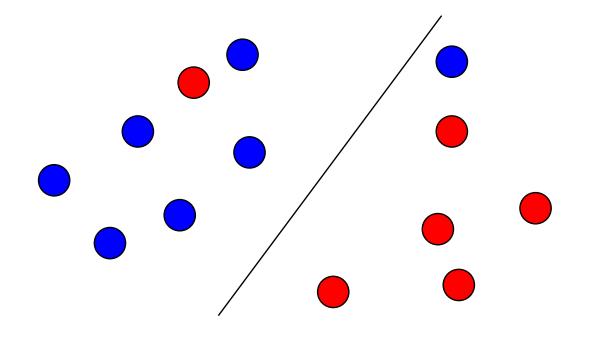
• Here the **dual** solution gives us directly the **primal** solution.

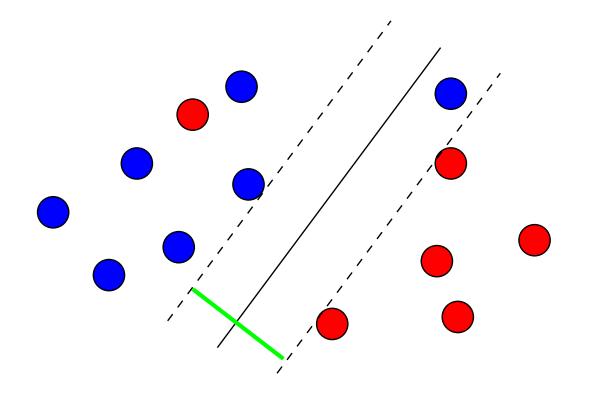
EPAT'10 - M. Cuturi

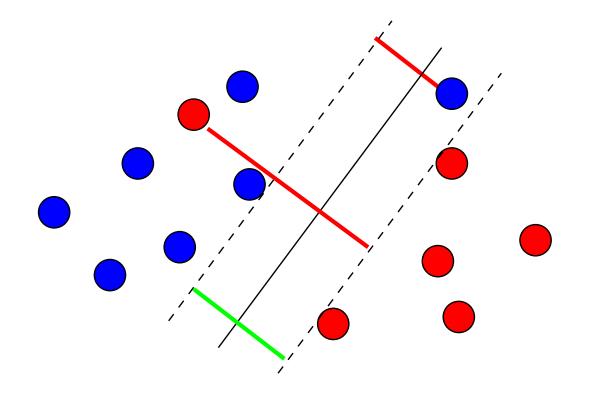
Interpretation: support vectors











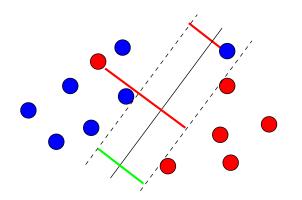
EPAT'10 - M. Cuturi

Soft-margin SVM

- Find a trade-off between large margin and few errors.
- Mathematically:

$$\min_{f} \left\{ \frac{1}{\mathsf{margin}(f)} + C \times \mathsf{errors}(f) \right\}$$

• C is a parameter



Soft-margin SVM formulation

• The margin of a labeled point (\mathbf{x},\mathbf{y}) is

margin
$$(\mathbf{x}, \mathbf{y}) = \mathbf{y} \left(\mathbf{w}^T \mathbf{x} + b \right)$$

- The error is
 - \circ 0 if margin(**x**, **y**) > 1, \circ 1 − margin(**x**, **y**) otherwise.
- The soft margin SVM solves:

$$\min_{\mathbf{w},b} \{ \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \}$$

- $c(u, y) = \max\{0, 1 yu\}$ is known as the hinge loss.
- $c(\mathbf{w}^T \mathbf{x}_i + b, \mathbf{y}_i)$ associates a mistake cost to the decision \mathbf{w}, b for example \mathbf{x}_i .

Dual formulation of soft-margin SVM

• The soft margin SVM program

$$\min_{\mathbf{w},b} \{ \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \}$$

can be rewritten as

minimize
$$\|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that $\mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \ge 1 - \xi_i$

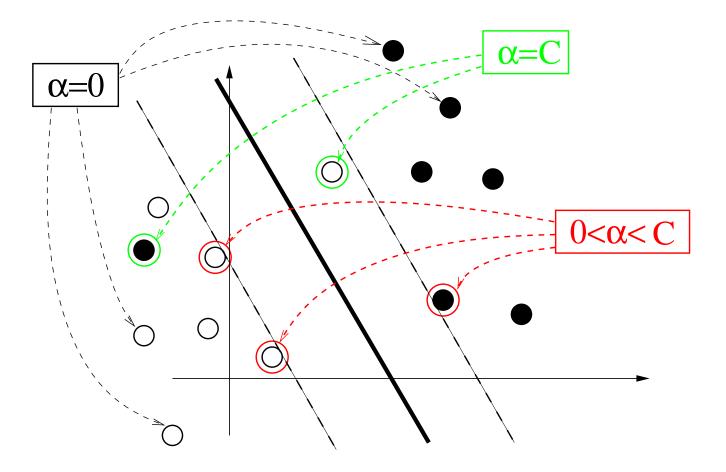
• In that case the dual function

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j \mathbf{y}_i \mathbf{y}_j \mathbf{x}_i^T \mathbf{x}_j,$$

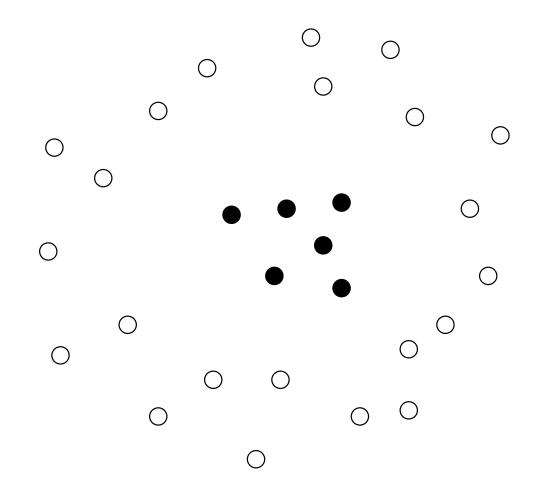
which is finite under the constraints:

$$\begin{cases} 0 \le \alpha_i \le \mathbf{C}, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

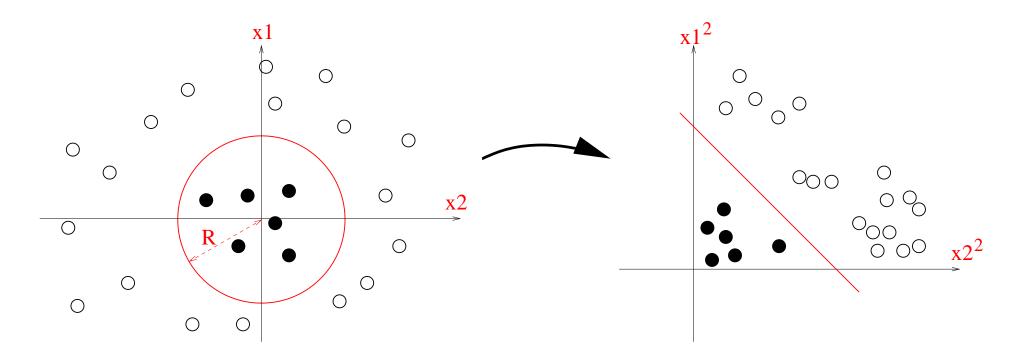
Interpretation: bounded and unbounded support vectors



Sometimes linear classifiers are not interesting



Solution: non-linear mapping to a feature space



Let $\phi(\mathbf{x}) = (x_1^2, x_2^2)'$, $\mathbf{w} = (1, 1)'$ and b = 1. Then the decision function is:

$$f(\mathbf{x}) = x_1^2 + x_2^2 - R^2 = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b,$$

Kernel trick for SVM's

- use a mapping ϕ from ${\mathcal X}$ to a feature space,
- which corresponds to the **kernel** k:

$$\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

• Example: if
$$\phi(\mathbf{x}) = \phi\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix} x_1^2\\x_2^2\end{bmatrix}$$
, then

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = (x_1)^2 (x_1')^2 + (x_2)^2 (x_2')^2.$$

Training a SVM in the feature space

Replace each $\mathbf{x}^T \mathbf{x}'$ in the SVM algorithm by $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = k(\mathbf{x}, \mathbf{x}')$

• The dual problem is to maximize

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{k}(\mathbf{x}_i, \mathbf{x}_j),$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

• The **decision function** becomes:

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(x) \rangle + b^*$$

= $\sum_{i=1}^n \alpha_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b^*.$ (1)

The kernel trick

- The explicit computation of $\phi({\bf x})$ is not necessary. The kernel $k({\bf x},{\bf x}')$ is enough.
- The SVM optimization for α works **implicitly** in the feature space.
- The SVM is a kernel algorithm: only need to input K and y:

maximize
$$g(\alpha) = \alpha^T \mathbf{1} - \frac{1}{2} \alpha^T (\mathbf{y}^T \mathbf{K} \mathbf{y}) \alpha$$

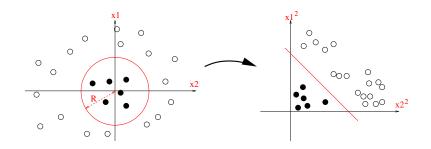
such that $0 \le \alpha_i \le C$, for $i = 1, ..., n$
 $\sum_{i=1}^n \alpha_i \mathbf{y}_i = 0.$

• in the end the solution
$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \cdot) + b$$
.

Kernel example: polynomial kernel

• For $\mathbf{x} = (x_1, x_2)^\top \in \mathbb{R}^2$, let $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$:

$$\begin{aligned} \mathbf{K}(\mathbf{x}, \mathbf{x'}) &= x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 \\ &= \{x_1 x_1' + x_2 x_2'\}^2 \\ &= \{\mathbf{x}^T \mathbf{x'}\}^2 . \end{aligned}$$



Empirical Risk Minimization

- Starting with $\{(\mathbf{x}_1, \mathbf{y}_1), \cdots, (\mathbf{x}_n, \mathbf{y}_n)\}$, n couples of $\mathcal{X} \times \mathcal{Y}$,
- A functional class \mathcal{F} ,
- A cost function c : 𝒴 × 𝒴, c ≥ 0, which penalizes discrepancies (distances? squared-distance?)
- find the function which minimizes

$$\hat{f} \in \operatorname*{argmin}_{f \in \boldsymbol{\mathcal{F}}} \hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{c}(f(\mathbf{x}_i), y_i)$$

and use this f as a decision function.

- As usual in minimizations, we love:
 - Convex problems, unique minimizers
 - Stable solutions numerically.

Linear least squares

- When $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$,
- $\mathcal{F} = \{ \mathrm{x} \mapsto eta^T \mathrm{x} + b \,, eta \in \mathbb{R}^d, b \in \mathbb{R} \}, \, c(\mathrm{y}_1, \mathrm{y}_2) = \| \mathrm{y}_1 \mathrm{y}_2 \|^2$,
- The problem is known as **regression** with the **least squares criterion**.
- In this case, the minimizer

$$\operatorname{argmin}_{f \in \boldsymbol{\mathcal{F}}} \hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{c}(f(\mathbf{x}_i), \mathbf{y}_i)$$

is **unique** (assuming n > d), and is equal to

$$\begin{bmatrix} b \\ \beta \end{bmatrix} = (XX^T)^{-1}X \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_n \end{bmatrix}$$

where
$$X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix}$$

Minimizers on general functional classes

- In this case a few factors contribute to the uniqueness:
 - convexity of *c*,
 - $\circ\,$ the feasible set, ${\boldsymbol{\mathcal F}}$ is sufficiently small to show no-degeneracy.
- Imagine we use instead a RKHS for \mathcal{F} .
- Usually two sources of problems:
 - \circ selecting functions in (infinite dimensional) RKHS can be ill-posed:

```
\operatorname{card} \{ \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}(f) \} could be \infty
```

 within these solutions, some are more desirable than others. In particular, better select smoother functions.

Minimizers in RKHS

- Main message: we do not want to deal with problems of optimization in **infinite dimensional** Hilbert spaces using **finite numbers of constraints**.
- Two major intuitions:

Bias the selection towards functions of low norm $||f||_{\mathcal{H}}$

- the norm quantifies the **roughness** of the function.
- if possible, better choose a **smooth** function for a decision function.

Minimizers in RKHS

Bias the selection towards functions we know in \mathcal{H}_{n} namely \mathcal{H}_{n}

• When the criterion only depends on the values of f on a sample $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \in \mathcal{X}$, as in \hat{R} , under certain conditions,

$$\operatorname{argmin} \hat{R} \subset \mathcal{H}_n \stackrel{\text{def}}{=} \operatorname{span} \{ k(\mathbf{x}_i, \cdot)_{i=1, \cdots, n} \}.$$

• As a consequence, f can be selected within the optimum set

 $\operatorname*{argmin}_{f\in\mathcal{H}_{\boldsymbol{n}}}\hat{R}(f),$

 \mathcal{H}_n is a **finite** dimensional subspace of \mathcal{H} . Always easier to handle mathematically.

Representer Theorem

Theorem 1. Let $\{x_i\}_{1 \leq i \leq n}$ be points in \mathcal{X} and let $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ be any function that is strictly increasing with respect to its last argument. Then any solution to the problem

$$\min_{f\in\mathcal{H}}\Psi\left(f(x_1),\cdots,f(x_n),\|f\|_{\mathcal{H}_k}\right)$$

is in \mathcal{H}_n .

Proof. Let
$$f = f_n + f^{\perp}$$
, where $f_n \in \mathcal{H}_n, f^{\perp} \in \mathcal{H}_n^{\perp}$.

• We have that $f(x_i) = f_n(x_i)$ since

$$f(x_i) = \langle f, k(x_i, \cdot) \rangle = \langle f, k(x_i, \cdot) \rangle = \langle f_n, k(x_i, \cdot) \rangle + \langle f^{\perp}, k(x_i, \cdot) \rangle = f_n(x_i).$$

Hence for any function $f \in \mathcal{H}$, $\Psi(f_n) < \Psi(f)$ hence any optimal f^* must be such that $f^* \in \mathcal{H}_n$.

Empirical Risk Minimization

• We can now write for a strictly convex loss *c*,

$$\hat{f} = \operatorname*{argmin}_{f \in \mathcal{H}_{n}} \hat{R}_{\lambda}(f) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{c}(f(\mathbf{x}_{i}), y_{i}) + \lambda \|f\|_{\mathcal{H}}^{2}$$

and this \hat{f} is **unique**

• $\lambda > 0$ balances the tradeoff between

 \circ a good fit for the data at hand

- \circ a smoothness as measured by $\|f\|$.
- This formulation can be generalized to any measure of smoothness J on \mathcal{F} ,

$$R_c^{\lambda}(f) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n c\left(f(x_i), y_i\right) + \lambda J(f).$$

A few examples

- \mathcal{X} is Euclidian, $\mathcal{Y} = \mathbb{R}$, $\mathcal{F} = \mathcal{X}^*$, the dual of \mathcal{X} and $c(f(x), y) = (y f(x))^2$, minimizing R_c^{λ} is known as
 - least-square regression when $\lambda = 0$;
 - \circ ridge regression when $\lambda > 0$ and J is the Euclidian 2-norm;
 - \circ the lasso when $\lambda > 0$ and J is the 1-norm.

• $\mathcal{X} = [0, 1]$, $\mathcal{Y} = \mathbb{R}$, \mathcal{F} is the space of *m*-times differentiable functions on [0, 1]and $J = \int_{[0,1]} (f^{(m)}(t))^2 dt$, we obtain regression by natural splines of order *m*.

A few examples

• \mathcal{X} is a set endowed with a kernel k and $\mathcal{Y} = \{-1, 1\}$, $\mathcal{F} = \mathcal{H}$, $J = \|\cdot\|_{\mathcal{H}}$ and

 When X is an arbitrary set endowed with a kernel k and Y = ℝ, F = H, J = || · ||_H and c(f(x), y) = (|y - f(x)| - ε)⁺, the ε-insensitive loss function, the solution to this program is known as support vector regression.

Unsupervised Techniques

Principal Component Analysis in \mathbb{R}^d .

• Start from a sample
$$X = {\mathbf{x}_1, \cdots, \mathbf{x}_n}$$
.

• Look for directions v_1, \cdots, v_d of \mathbb{R}^d such that for $1 \leq j \leq d$,

$$v_j = \operatorname*{argmax}_{v \in \mathbb{R}^d, \|v\|=1, v \perp \{v_1, \cdots, v_{j-1}\}} \operatorname{var}_X[v^T \mathbf{x}],$$

• For $f : \mathbb{R}^d \to \mathbb{R}$, $\operatorname{var}_X[f]$ is the empirical variance w.r.t. sample X, that is

$$\mathbf{var}_{X}[f] = E_{X}(f(\mathbf{x}) - E_{X}[f(\mathbf{x})])^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(f(\mathbf{x}_{i}) - \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_{i}) \right)^{2}].$$

• The r first eigenvectors v_1, \dots, v_r are the principal components.

Unsupervised Techniques

Canonical Correlation Analysis in $\mathbb{R}^{d,d'}$.

- Two associated samples X paired with $Y = \{\mathbf{y}_i\}_{1 \le i \le n}$ in $\mathbb{R}^{d'}$,
- Assume that the pairs (x_i, y_i) are drawn from a i.i.d law.
- CCA looks for relationships between X and Y by looking for linear projections of the samples X and Y,

$$\alpha^T \mathbf{x}_i \text{ and } \beta^T \mathbf{y}_j,$$

such that $\operatorname{corr}(\alpha^T \mathbf{x}_i, \beta^T \mathbf{y}_i)$ is high.

$$\begin{aligned} &(\alpha,\beta) = \operatorname*{argmax}_{\xi \in \mathbb{R}^{d}, \zeta \in \mathbb{R}^{d'}} \frac{\operatorname{corr}_{X,Y}[\alpha^{T}, \beta^{T}]}{\sum_{\xi \in \mathbb{R}^{d}, \zeta \in \mathbb{R}^{d'}} \frac{\operatorname{cov}_{X,Y}[\alpha^{T}, \beta^{T}]}{\sqrt{\operatorname{var}_{X}[\alpha^{T}]} \operatorname{var}_{Y}[\beta^{T}]} \end{aligned}$$

where for two real valued functions $f:\mathcal{X}\to\mathbb{R}$ and $g:\mathcal{Y}\to\mathbb{R}$ we write

$$\mathbf{var}_{X}[f] = E_{X}(f(\mathbf{x}) - E_{X}[f(\mathbf{x})])^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(f(x_{i}) - \frac{1}{n} \sum_{j=1}^{n} f(\mathbf{x}_{j}) \right)^{2},$$

$$\mathbf{var}_{Y}[g] = E_X(g(\mathbf{y}) - E_Y[g(\mathbf{y})])^2 = \frac{1}{n} \sum_{i=1}^n \left(g(y_i) - \frac{1}{n} \sum_{j=1}^n g(\mathbf{y}_j) \right)^2,$$

 $\operatorname{cov}_{X,Y}[f,g] = E_{X,Y}[(f(\mathbf{x}) - E_X[f(\mathbf{x})])(g(\mathbf{y}) - E_Y[g(\mathbf{y})])]$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(f(x_i) - \frac{1}{n} \sum_{j=1}^{n} f(\mathbf{x}_j) \right) \left(g(y_i) - \frac{1}{n} \sum_{j=1}^{n} g(\mathbf{y}_j) \right)$$

Unsupervised Techniques

both **non-convex** optimizations look for **vectors** in \mathbb{R}^d , that is **linear projections** which summarize the data.

- Although non-convex, the optima can be computed through eigenvalue decompositions of matrices.
- Courant-Weyl-Fisher minimax principle for Rayleigh quotients.

• Yet, these tools have limitations: linearity.

Kernel methods allow us to study nonlinear eigenfunctions and CCA-projections

kernel- Principal Component Analysis [SSM98]

• Consider X as spanning \mathcal{H}_n the two previous optimizations become

$$f_j = \operatorname*{argmax}_{f \in \mathcal{H}_{\mathcal{X}}, \|f\|_{\mathcal{H}_{\mathcal{X}}} = 1, f \perp \{f_1, \cdots, f_{j-1}\}} \operatorname{var}_X[\langle f, k_{\mathcal{X}}(\mathbf{x}, \cdot) \rangle_{\mathcal{H}}],$$

for $1 \leq j \leq n$.

• Using the $n \times n$ kernel matrix K_X , more precisely its centered counterpart

$$\bar{K}_X = (I_n - \frac{1}{n} \mathbb{1}_{n,n}) K_X (I_n - \frac{1}{n} \mathbb{1}_{n,n}).$$

The eigenfunctions f_i are recovered through the eigenvalue/eigenvector pairs (e_i,d_i) of \bar{K}_X ,

$$\bar{K}_X = EDE^T$$

where $D = \operatorname{diag}(d)$ and E is an orthogonal matrix. Writing $U = ED^{-1/2}$ we have that

$$f_j(\cdot) = \sum_{i=1}^n U_{i,j}k(x_i, \cdot)$$

with $\operatorname{var}_X[f_j(x)] = \frac{d_j}{n}$.

kernel- Canonical Correlation Analysis [Aka01,BJ02]

• A direct adaptation of the CCA criterion to infinite dimensional RKHS,

$$(f,g) = \operatorname*{argmax}_{f \in \mathcal{H}_{\mathcal{X}}, g \in \mathcal{H}_{\mathcal{Y}}} \frac{\mathbf{cov}_{X,Y}[\langle f, k_{\mathcal{X}}(x, \cdot) \rangle_{\mathcal{H}_{\mathcal{X}}}, \langle g, k_{\mathcal{Y}}(y, \cdot) \rangle_{\mathcal{H}_{\mathcal{X}}}]}{\sqrt{\mathbf{var}_{X}[\langle f, k_{\mathcal{X}}(x, \cdot) \rangle_{\mathcal{H}_{\mathcal{X}}}] \mathbf{var}_{Y}[\langle g, k_{\mathcal{Y}}(y, \cdot) \rangle_{\mathcal{H}_{\mathcal{Y}}}]}}$$

- This does not work numerically on finite samples. Denominator goes to zero.
- In [FBG07], it is shown that using

$$(f,g) = \underset{f \in \mathcal{X}, g \in \mathcal{Y}}{\operatorname{argmax}} \frac{\operatorname{corr}_{X,Y}[f,g]}{\sqrt{(\operatorname{var}_X[f] + \lambda \|f\|^2)(\operatorname{var}_Y[g] + \lambda \|g\|^2)}},$$

and letting $\lambda \to 0$ as $n \to \infty$ works.

kernel-Canonical Correlation Analysis [Aka01,BJ02]

• The finite sample estimates f^n and g^n can be recovered as

$$f^{n}(\cdot) = \sum_{i=1}^{n} \xi_{i} \varphi_{i}(\cdot),$$
$$g^{n}(\cdot) = \sum_{i=1}^{n} \zeta_{i} \psi_{i}(\cdot)$$

where ξ and ζ are the solutions of

$$(\xi, \zeta) = \operatorname{argmax}_{\xi, \zeta \in \mathbb{R}^n,} \zeta^T K_Y K_X \xi$$
$$\xi^T (\bar{K}_X^2 + n\lambda \bar{K}_X) \xi = \zeta^T (\bar{K}_Y^2 + n\lambda \bar{K}_Y) \zeta = 1$$

and

$$\varphi_i(\cdot) = k_{\mathcal{X}}(\mathbf{x}_i, \cdot) - \frac{1}{n} \sum_{j=1}^n k_{\mathcal{X}}(\mathbf{x}_i, \cdot), \quad \psi_i(\cdot) = k_{\mathcal{Y}}(\mathbf{y}_i, \cdot) - \frac{1}{n} \sum_{j=1}^n k_{\mathcal{Y}}(\mathbf{y}_i, \cdot),$$

are the centered projections of (\mathbf{x}_i) and (\mathbf{y}_j) in $\mathcal{H}_{\mathcal{X}}$ and $\mathcal{H}_{\mathcal{Y}}$