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Outline

• Mathematical considerations (≤ 80′s)

◦ Reproducing Kernel Hilbert Spaces
◦ positive-definiteness, negative definiteness etc..
◦ kernels, similarities and distances

• Defining kernels

◦ Standard kernels (≤ 80′s)
◦ Statistical modeling & kernels (> 1998)
◦ Algebraic structures and kernels

• Kernel algorithms

◦ supervised learning, SVM (≥ 1995)
◦ representer theorem
◦ unsupervised techniques, eigenfunctions of samples (≥ 1998)
◦ density estimation and novelty detection (≥ 1999)
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Kernel algorithms

algorithms which select functions with desirable properties in a RKHS
algorithms which only take as inputs Gram matrices K
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Regression, Classification and other Supervised Tasks

• Two associated random variables

◦ A random variable x, taking values in X ,
◦ A random variable y, taking values in Y.

• Two samples of (x, y) i.i.d. distributed from their joint law

◦ {(x1,y1), · · · , (xn,yn)}, n couples of X × Y.

Challenge: predict y when given only x.

• In practice, find a function X → Y for which f(x) is not too different from y
on average.
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Binary Classification

• Y = −1, 1.

• f needs to be a functions that, given x predicts a label,

f : X 7→ {0, 1}

of course, many possible choices for f ’s shape.

• We review here linear hyperplanes in X = R
d first.

• We represent it in R
2 for simplicity.

Next slides will cover an important algorithm, the SVM algorithm

• this algorithm can be naturally expressed in terms of kernels. we review later
other algorithms for which this is also the case.

thanks to Jean-Philippe Vert for many of the following figures and slides.

EPAT’10 - M. Cuturi



Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Which one is better?
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A criterion to select a linear classifier: the margin
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Largest Margin Linear Classifier
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Support Vectors with Large Margin
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In equations

• The training set is a finite set of n data/class pairs:

T = {(x1,y1), . . . , (xN ,yN)} ,

where xi ∈ R
d and yi ∈ {−1, 1}.

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx + b consider the interstice defined by the
hyperplanes

• f(x) = wTx + b = +1

• f(x) = wTx + b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1
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The margin is 2/||w||

• Indeed, the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ = 2||x2 − x1|| =
2

||w||.

where γ is the margin.
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All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(

wTxi + b
)

≥ 1
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Finding the optimal hyperplane

• Find (w, b) which minimize:
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• namely, for each training point. The Lagrangian is, for α � 0,

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

.
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The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

}

is only defined when

w =
n
∑

i=1

αiyixi, ( derivating w.r.t w) (∗)

0 =
n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, we get the dual function
g(α).

• To compute the dual, just maximize g w.r.t. α.

• Strong duality holds. KKT gives us αi(yiw
Txi − 1) = 0, either αi = 0 or

yiw
Txi = 1.

• αi 6= 0 only for points on the support hyperplanes {(x,y)|ywTxi = 1}.
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1αi − 1
2

∑n
i,j=1αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1αiyi = 0.

This is a quadratic program on R
n, with box constraints.

α∗ can be found efficiently using dedicated optimization softwares
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Recovering the optimal hyperplane

• Once α∗ is found, we recover (wT , b∗) corresponding to the optimal
hyperplane.

• wT is given by wT =
∑n

i=1αix
T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1

2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx + b∗

=
n
∑

i=1

αix
T
i x + b∗.

• Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors

α>0

α=0
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What happens when the data is not linearly separable?
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Soft-margin SVM

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{

1

margin(f)
+ C × errors(f)

}

• C is a parameter
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Soft-margin SVM formulation

• The margin of a labeled point (x,y) is

margin(x,y) = y
(

wTx + b
)

• The error is

◦ 0 if margin(x,y) > 1,
◦ 1 − margin(x,y) otherwise.

• The soft margin SVM solves:

min
w,b

{‖w‖2 + C

n
∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

• c(u, y) = max{0, 1 − yu} is known as the hinge loss.

• c(wTxi + b,yi) associates a mistake cost to the decision w, b for example xi.
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Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b

{‖w‖2 + C
n
∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1 ξi
such that yi

(

wTxi + b
)

≥ 1 − ξi

• In that case the dual function

g(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let φ(x) = (x2
1, x

2
2)

′, w = (1, 1)′ and b = 1. Then the decision function is:

f(x) = x2
1 + x2

2 −R2 = 〈w, φ(x) 〉 + b,
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Kernel trick for SVM’s

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x,x′ ∈ X , k(x,x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1

x2

])

=

[

x2
1

x2
2

]

, then

k(x,x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′1)

2 + (x2)
2(x′2)

2.
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Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x,x′)

• The dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjk(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉 + b∗

=
n
∑

i=1

αik(xi, x) + b∗.
(1)
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The kernel trick

• The explicit computation of φ(x) is not necessary. The kernel k(x,x′) is
enough.

• The SVM optimization for α works implicitly in the feature space.

• The SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1
2α

T (yTKy)α
such that 0 ≤ αi ≤ C, for i = 1, . . . , n

∑n
i=1αiyi = 0.

• in the end the solution f(x) =
∑n

i=1αik(xi, ·) + b.
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Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√

2x1x2, x
2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2
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Empirical Risk Minimization

• Starting with {(x1,y1), · · · , (xn,yn)}, n couples of X × Y,

• A functional class F ,

• A cost function c : Y × Y, c ≥ 0, which penalizes discrepancies (distances?
squared-distance?)

• find the function which minimizes

f̂ ∈ argmin
f∈F

R̂(f) =
1

n

n
∑

i=1

c(f(xi), yi)

and use this f as a decision function.

• As usual in minimizations, we love:

◦ Convex problems, unique minimizers
◦ Stable solutions numerically.
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Linear least squares

• When X = R
d, Y = R,

• F = {x 7→ βTx + b , β ∈ R
d, b ∈ R}, c(y1, y2) = ‖y1 − y2‖

2,

• The problem is known as regression with the least squares criterion.

• In this case, the minimizer

argmin
f∈F

R̂(f) =
1

n

n
∑

i=1

c(f(xi),yi)

is unique (assuming n > d), and is equal to

[

b
β

]

= (XXT )−1X





y1
...

yn





where X =









1 1 · · · 1
... ... · · · ...
x1 x2 · · · xn
... ... · · · ...








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Minimizers on general functional classes

• In this case a few factors contribute to the uniqueness:

◦ convexity of c,
◦ the feasible set, F is sufficiently small to show no-degeneracy.

• Imagine we use instead a RKHS for F .

• Usually two sources of problems:

◦ selecting functions in (infinite dimensional) RKHS can be ill-posed:

card{argmin
f∈H

R̂(f)} could be ∞

◦ within these solutions, some are more desirable than others. In particular,
better select smoother functions.
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Minimizers in RKHS

• Main message: we do not want to deal with problems of optimization in
infinite dimensional Hilbert spaces using finite numbers of constraints.

• Two major intuitions:

Bias the selection towards functions of low norm ‖f‖H

• the norm quantifies the roughness of the function.

• if possible, better choose a smooth function for a decision function.
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Minimizers in RKHS

Bias the selection towards functions we know in H, namely Hn

• When the criterion only depends on the values of f on a sample
{x1, · · · ,xn} ∈ X , as in R̂, under certain conditions,

argmin R̂⊂Hn
def
= span{k(xi, ·)i=1,··· ,n}.

• As a consequence, f can be selected within the optimum set

argmin
f∈Hn

R̂(f),

Hn is a finite dimensional subspace of H. Always easier to handle
mathematically.
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Representer Theorem

Theorem 1. Let {xi}1≤i≤n be points in X and let Ψ : R
n+1 → R be any

function that is strictly increasing with respect to its last argument. Then

any solution to the problem

min
f∈H

Ψ
(

f(x1), · · · , f(xn), ‖f‖Hk

)

is in Hn.

Proof. Let f = fn + f⊥, where fn ∈ Hn, f
⊥ ∈ H⊥

n .

• We have that f(xi) = fn(xi) since

f(xi) = 〈f, k(xi, ·) 〉 = 〈f, k(xi, ·) 〉 = 〈fn, k(xi, ·) 〉 + 〈f⊥, k(xi, ·) 〉 = fn(xi).

Hence for any function f ∈ H, Ψ(fn) < Ψ(f) hence any optimal f⋆ must be
such that f⋆ ∈ Hn.
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Empirical Risk Minimization

• We can now write for a strictly convex loss c,

f̂ = argmin
f∈Hn

R̂λ(f) =
1

n

n
∑

i=1

c(f(xi), yi) + λ‖f‖2
H

and this f̂ is unique

• λ > 0 balances the tradeoff between

◦ a good fit for the data at hand
◦ a smoothness as measured by ‖f‖.

• This formulation can be generalized to any measure of smoothness J on F ,

Rλ
c (f)

def
=

1

n

n
∑

i=1

c (f(xi), yi) + λJ(f).
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A few examples

• X is Euclidian, Y = R, F = X ∗, the dual of X and c(f(x), y) = (y − f(x))2,
minimizing Rλ

c is known as

◦ least-square regression when λ = 0;
◦ ridge regression when λ > 0 and J is the Euclidian 2-norm;
◦ the lasso when λ > 0 and J is the 1-norm.

• X = [0, 1], Y = R, F is the space of m-times differentiable functions on [0, 1]

and J =
∫

[0,1]

(

f (m)(t)
)2
dt, we obtain regression by natural splines of order m.
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A few examples

• X is a set endowed with a kernel k and Y = {−1, 1}, F = H, J = ‖ · ‖H and

◦ the hinge loss c(f(x), y) = (1 − yf(x))+ → SVM
◦ c(f(x), y) = (y − f(x))2 → LS-SVM,
◦ c(f(x), y) = ln(1 + e−yf(x)) →→ kernel logistic regression.

• When X is an arbitrary set endowed with a kernel k and Y = R, F = H,
J = ‖ · ‖H and c(f(x), y) = (|y − f(x)| − ε)+, the ε-insensitive loss function,
the solution to this program is known as support vector regression.
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Unsupervised Techniques

Principal Component Analysis in R
d.

• Start from a sample X = {x1, · · · ,xn}.

• Look for directions v1, · · · , vd of R
d such that for 1 ≤ j ≤ d,

vj = argmax
v∈Rd,‖v‖=1,v⊥{v1,··· ,vj−1}

var
X

[vTx],

• For f : R
d → R, varX[f ] is the empirical variance w.r.t. sample X , that is

var
X

[f ] = EX(f(x) −EX[f(x)])2 =
1

n

n
∑

i=1

(

f(xi) −
1

n

n
∑

i=1

f(xi)

)2

].

• The r first eigenvectors v1, · · · , vr are the principal components.
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Unsupervised Techniques

Canonical Correlation Analysis in R
d,d′.

• Two associated samples X paired with Y = {yi}1≤i≤n in R
d′,

• Assume that the pairs (xi, yi) are drawn from a i.i.d law.

• CCA looks for relationships between X and Y by looking for linear projections
of the samples X and Y ,

αTxi and βTyj,

such that corr(αTxi, β
Tyi) is high.

(α, β) = argmax
ξ∈Rd,ζ∈Rd′

corr
X,Y

[αT , βT ]

= argmax
ξ∈Rd,ζ∈Rd′

covX,Y [αT , βT ]
√

varX[αT ]varY [βT ]
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where for two real valued functions f : X → R and g : Y → R we write

var
X

[f ] = EX(f(x) −EX[f(x)])2 =
1

n

n
∑

i=1



f(xi) −
1

n

n
∑

j=1

f(xj)





2

,

var
Y

[g] = EX(g(y) −EY [g(y)])2 =
1

n

n
∑

i=1



g(yi) −
1

n

n
∑

j=1

g(yj)





2

,

cov
X,Y

[f, g] = EX,Y [(f(x) −EX[f(x)])(g(y) − EY [g(y)])]

=
1

n

n
∑

i=1



f(xi) −
1

n

n
∑

j=1

f(xj)







g(yi) −
1

n

n
∑

j=1

g(yj)




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Unsupervised Techniques

both non-convex optimizations look for vectors in R
d,

that is linear projections which summarize the data.

• Although non-convex, the optima can be computed through eigenvalue
decompositions of matrices.

• Courant-Weyl-Fisher minimax principle for Rayleigh quotients.

• Yet, these tools have limitations: linearity.

Kernel methods allow us to study nonlinear eigenfunctions and CCA-projections
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kernel- Principal Component Analysis [SSM98]

• Consider X as spanning Hn the two previous optimizations become

fj = argmax
f∈HX ,‖f‖HX

=1,f⊥{f1,··· ,fj−1}

var
X

[〈f, kX (x, ·)〉H],

for 1 ≤ j ≤ n.

• Using the n× n kernel matrix KX, more precisely its centered counterpart

K̄X = (In − 1

n
1n,n)KX(In − 1

n
1n,n).

The eigenfunctions fi are recovered through the eigenvalue/eigenvector pairs
(ei, di) of K̄X,

K̄X = EDET

where D = diag(d) and E is an orthogonal matrix. Writing U = ED−1/2 we
have that

fj(·) =
n
∑

i=1

Ui,jk(xi, ·)

with varX[fj(x)] =
dj

n .
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kernel- Canonical Correlation Analysis [Aka01,BJ02]

• A direct adaptation of the CCA criterion to infinite dimensional RKHS,

(f, g) = argmax
f∈HX ,g∈HY

covX,Y [〈f, kX (x, ·)〉HX
, 〈g, kY(y, ·)〉HX

]
√

varX[〈f, kX (x, ·)〉HX
]varY [〈g, kY(y, ·)〉HY

]
.

• This does not work numerically on finite samples. Denominator goes to zero.

• In [FBG07], it is shown that using

(f, g) = argmax
f∈X ,g∈Y

corrX,Y [f, g]
√

(varX[f ] + λ‖f‖2)(varY [g] + λ‖g‖2)
,

and letting λ→ 0 as n→ ∞ works.
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kernel-Canonical Correlation Analysis [Aka01,BJ02]

• The finite sample estimates fn and gn can be recovered as

fn(·) =
n
∑

i=1

ξiϕi(·),

gn(·) =
n
∑

i=1

ζiψi(·)

where ξ and ζ are the solutions of

(ξ, ζ) = argmax
ξ, ζ ∈ R

n,
ξT (K̄2

X + nλK̄X)ξ = ζT (K̄2
Y + nλK̄Y )ζ = 1

ζT K̄Y K̄Xξ

and

ϕi(·) = kX (xi, ·) −
1

n

n
∑

j=1

kX (xi, ·), ψi(·) = kY(yi, ·) −
1

n

n
∑

j=1

kY(yi, ·),

are the centered projections of (xi) and (yj) in HX and HY
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