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Outline

e Mathematical considerations (< 80’s)

o Reproducing Kernel Hilbert Spaces
o positive-definiteness, negative definiteness etc..
o kernels, similarities and distances

e Defining kernels

o Standard kernels (< 80's)
o Statistical modeling & kernels (> 1998)
o Algebraic structures and kernels

e Kernel algorithms

o supervised learning, SVM (> 1995)

o representer theorem

o unsupervised techniques, eigenfunctions of samples (> 1998)
o density estimation and novelty detection (> 1999)
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Kernel algorithms

algorithms which select functions with desirable properties in a RKHS
algorithms which only take as inputs Gram matrices K
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Regression, Classification and other Supervised Tasks

e Two associated random variables

o A random variable z, taking values in X,
o A random variable y, taking values in ).

e Two samples of (z,y) i.i.d. distributed from their joint law

o {(x1,¥1), " ,(Xn,yn)}, n couples of X x ).

Challenge: predict y when given only x.

e In practice, find a function X — Y for which f(x) is not too different from y
on average.
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Binary Classification

o V=-11.

e f needs to be a functions that, given x predicts a label,
f:X {01}

of course, many possible choices for f's shape.
e We review here linear hyperplanes in X = R first.

o We represent it in R? for simplicity.

Next slides will cover an important algorithm, the SVM algorithm

e this algorithm can be naturally expressed in terms of kernels. we review later
other algorithms for which this is also the case.

thanks to Jean-Philippe Vert for many of the following figures and slides.
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Which one is better?
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A criterion to select a linear classifier: the margin
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Largest Margin Linear Classifier

EPAT’10 - M. Cuturi



Support Vectors with Large Margin
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In equations

e The training set is a finite set of n data/class pairs:

T = {(X1>y1)> ceey (XN,YN)}a

where x; € R? and y; € {—1,1}.

e We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w,b) € R? x R such that:

wix, +b>0 ify, =1,
wix; +b<0 ify,=—1.
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wlx + b consider the interstice defined by the
hyperplanes

e f(x)=wlx+b=+1
e f(x)=wlx+b=-1

A
X+b=0
WX\\A
\

O
O

O w.x
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The margin is 2/||w/||

e Indeed, the points x; and x5 satisfy:

WTX1 + b= O,
wlixy+b=1.
e By subtracting we get w! (x9 — x;) = 1, and therefore:
2
v =2|[x2 — x1f| = 77—
[|wl]

where v Is the margin.
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All training points should be on the appropriate side

e For positive examples (y; = 1) this means:

wix, +b>1

e For negative examples (y; = —1) this means:

wix;, +b< —1

e in both cases:
Vi=1,...,n, yi(WTXi—Fb)Zl
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Finding the optimal hyperplane

e Find (w,b) which minimize:

[[wil*

under the constraints:

EPAT’10 - M. Cuturi

Vi=1,...,n, yi(wai+b)—1ZO.

This is a classical quadratic program on R4+!
linear constraints - quadratic objective




Lagrangian

e In order to minimize: |
1w

under the constraints:

Vi=1,...,n, yi(WTxiﬁ—b)—lZO.

e introduce one dual variable «; for each constraint,

e namely, for each training point. The Lagrangian is, for a > 0,

1 mn
L(w,b,a) = 5\\WH2 =) oy (yi (W' +b) — 1) .
1=1
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The Lagrange dual function

gla)= inf {;w =3 (i (ki +b) — 1>}

wERC bER :
1=1

is only defined when
W = Z a;yiX;, ( derivating w.rt w) (%)
i=1

0= Z ;y;, (derivating w.r.t b) ()
i=1

substituting () in g, and using (xx) as a constraint, we get the dual function
g(@).
e To compute the dual, just maximize g w.r.t. a.

e Strong duality holds. KKT gives us a;(y;wlx; — 1) = 0, either a;; = 0 or

inTXi =1.

e o; # 0 only for points on the support hyperplanes {(x,y)|yw!x; = 1}.
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Dual optimum

The dual problem is thus

maximize g(a)=>1 , a; — %szzl QY Y X)X
such that ar=0,> "  ay; =0.

This is a quadratic program on R", with box constraints.
o™ can be found efficiently using dedicated optimization softwares
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Recovering the optimal hyperplane

e Once a* is found, we recover (w?,b*) corresponding to the optimal
hyperplane.

o wl isgiven by w! =31  a;x],
e b* is given by the conditions on the support vectors a; > 0, y;(wlx; +b) = 1,

1
b* — —— i T . Ty
5 (y@:%%o("" xi) + _max (W Xz>)

e the decision function is therefore:

f*(x) =wlx 4 b*

n
—= E ;x; x + b*.
i=1

e Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors
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What happens when the data is not linearly separable?

EPAT’10 - M. Cuturi



What happens when the data is not linearly separable?

EPAT’10 - M. Cuturi



What happens when the data is not linearly separable?

EPAT’10 - M. Cuturi



What happens when the data is not linearly separable?

EPAT’10 - M. Cuturi



Soft-margin SVM

e Find a trade-off between large margin and few errors.

e Mathematically:

mfin { ! + C' % errors(f)}

margin(f)

e (' is a parameter
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Soft-margin SVM formulation
e The margin of a labeled point (x,y) is
margin(x,y) =y (WTX — b)

e [he error is

o 0 if margin(x,y) > 1,
o 1 — margin(x,y) otherwise.

e The soft margin SVM solves:

: 2 1
E 1 . .
mll?{HWH —|—C" 1maX{O, Y (W XZ—|—b)}

e c(u,y) =max{0,1 — yu} is known as the hinge loss.

o ¢(wlx;+b,y;) associates a mistake cost to the decision w, b for example x;.
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Dual formulation of soft-margin SVM

e The soft margin SVM program
mm{HWH2 + C’Zmax{() 1—y; (wix; +b)}
=1

can be rewritten as

minimize [w|?+C > &
such that y; (wix; +b) >1—¢;

e In that case the dual function

Zaz — 3 Z Qg a]YijX Xj)

1,7=1

which is finite under the constraints:

0<y<C, fori=1,...,n
Z?:laiyfizg
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Interpretation: bounded and unbounded support vectors

0<o<C

Y
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

x1 x12
®
o 9,0
Qoo ©
° OOC; N
.'. ® O 00 x22

Let ¢(x) = (z%,23)’, w = (1,1) and b = 1. Then the decision function is:

f(x) =a7+a;— R = (w,¢(x)) +0,
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Kernel trick for SVM'’s

e use a mapping ¢ from X to a feature space,

e which corresponds to the kernel k:
vx,x € X, k(x,x') = (6(x),(x'))

2
1

o Example: if ¢(x) = ¢ ([ZD = [i%] then

k(x,x') = (6(x),p(x') ) = (21)*(2))” + (22)*(25)".
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Training a SVM in the feature space

Replace each x’x’ in the SVM algorithm by (¢(x), ¢(x')) = k(x,x’)

e The dual problem is to maximize

n n
1
g(oz) = E o — 5 g Oéio{jyiyjk(xia Xj)a

under the constraints:

OSO@SC, fOF’iIl,...,n
Z?:l@z’yfi:o-

e [ he decision function becomes:

F(x) = (w,6(x)) +b*

= Z a;k(x;,x) + b".
i=1
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The kernel trick

e The explicit computation of ¢(x) is not necessary. The kernel k(x,x’) is
enough.

e The SVM optimization for o works implicitly in the feature space.
e The SVM is a kernel algorithm: only need to input K and y:
maximize g(a) =a’l— 1ol (y"Ky)a

suchthat 0<a; <C, fori=1,...,n
2 i1 o6yi = 0.

e in the end the solution f(x) => " | a;k(x;,) +b.
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Kernel example: polynomial kernel

o For x = (z1,22)" € R?, let ¢(x) = (22, /22129, 22) € R?:

/ 2 12 ! ! 2 12
K(x,x") = xiz7 + 2x120207 05 + 2525
/ /2
= {z12] + T2}

— {XTXI}2 .

x1
P o
o

ST
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Empirical Risk Minimization

e Starting with {(x1,y1), -, (Xn,yn)}, n couples of X x ),
e A functional class F,

e A cost function ¢: Y x Y, ¢ > 0, which penalizes discrepancies (distances?
squared-distance?)

e find the function which minimizes

f€argmin R(f) = = > e(f(xi), i)

n
fer i—1

and use this f as a decision function.
e As usual in minimizations, we love:

o Convex problems, unique minimizers
o Stable solutions numerically.
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Linear least squares

e When ¥ =R%, VY =R,
o F = {X —> BTX—l— b,,@ c Rd,b S R}a C(Y17Y2) — ”yl o y2||2'

e The problem is known as regression with the least squares criterion.

e [n this case, the minimizer

argmin R(f) = = Z c(f(xi),yi)

feF n -

is unique (assuming n > d), and is equal to

b _yl_
[ ﬁ] = (XX")7'X |
| Yn
1 1 1]
where X = .
X1 X9 « o Xn
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Minimizers on general functional classes

e In this case a few factors contribute to the uniqueness:

o convexity of c,
o the feasible set, F is sufficiently small to show no-degeneracy.

e Imagine we use instead a RKHS for F.
e Usually two sources of problems:

o selecting functions in (infinite dimensional) RKHS can be ill-posed:

card{argmin R(f)} could be co
fer

o within these solutions, some are more desirable than others. In particular,
better select smoother functions.
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Minimizers in RKHS

e Main message: we do not want to deal with problems of optimization in
infinite dimensional Hilbert spaces using finite numbers of constraints.

e [wo major intuitions:

Bias the selection towards functions of low norm || f]|x

e the norm quantifies the roughness of the function.

e if possible, better choose a smooth function for a decision function.
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Minimizers in RKHS

Bias the selection towards functions we know in ‘H, namely H,,

e When the criterion only depends on the values of f on a sample
{x1, - ,x,} € X, as in R, under certain conditions,

argmin RCH, et span{ k(X;,)i=1,.- .n}-

e As a consequence, f can be selected within the optimum set

argmin R(f),
f€RR

H,, is a finite dimensional subspace of H. Always easier to handle
mathematically.
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Representer Theorem

Theorem 1. Let {x;}1<i<n be points in X and let ¥ : R"Tt — R be any
function that is strictly increasing with respect to its last arqgument. Then
any solution to the problem

min V¥ (f(l‘l), o fTn), Hf”'Hk)

fer
18 1 H,,.

Proof. Let f = f, + f*, where f, € H,, f+ € HL.
e We have that f(x;) = f,.(x;) since

Flzi) = (f k(zi,)) = (f k(zi,) ) = (far k@i, ) )+ (f 7 k(i,0) ) = falms).

Hence for any function f € ‘H, U(f,) < V(f) hence any optimal f* must be
such that f* € H,,.
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Empirical Risk Minimization

e We can now write for a strictly convex loss c,

A

= argmin Ba(f) = — 3" e(f(xi), i) + MI1By
1=1

feHn

and this f IS unique
e )\ > (0 balances the tradeoff between

o a good fit for the data at hand
o a smoothness as measured by || f]|.

e This formulation can be generalized to any measure of smoothness J on F,

n
def 1

RAA)E D elf@a)y) + A (f)
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A few examples

e X is Euclidian, Y = R, F = X*, the dual of X and ¢(f(2),y) = (y — f(x))?,
minimizing R is known as

o least-square regression when \ = 0;

o ridge regression when A > 0 and J is the Euclidian 2-norm;
o the lasso when A > 0 and J is the 1-norm.

e X =1[0,1], Y =R, F is the space of m-times differentiable functions on [0, 1]
and J = f[o 1) (f(m)(t))2 dt, we obtain regression by natural splines of order m.

EPAT’10 - M. Cuturi



A few examples

e X is a set endowed with a kernel k and Y ={-1,1}, F=H, J = - || and

o the hinge loss ¢(f(z),y) = (1 — yf(x))T — SVM
o e(f(x).y) = (y — [(x)) — LS-SVM,
o c(f(x),y) = In(1 + e ¥F(*)) - kernel logistic regression.

e When X is an arbitrary set endowed with a kernel £ and Y =R, F ="H,

J=| "1l and e(f(x),y) = (ly — f(x)] — )T, the e-insensitive loss function,
the solution to this program is known as support vector regression.
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Unsupervised Techniques

Principal Component Analysis in R?.

e Start from a sample X = {x1, - ,x,}.
e Look for directions vy, - ,v4 of R? such that for 1 < j < d,
_ T
v = argmax var|v x|,

veRd |[vl|=1vL{vy, - w1}

e For f:RY - R, wvarx[f]is the empirical variance w.r.t. sample X, that is

2
1 — 1 —
V)%r[f] = Ex(f(x) — Ex[f(x)])* = - Z <f(X7;) - Z f(Xv;)> J.
i=1 i=1
e The r first eigenvectors vy, --- , v, are the principal components.
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Unsupervised Techniques

L] L] L] L] /
Canonical Correlation Analysis in R .

e Two associated samples X paired with Y = {y;}1<i<n in R4
e Assume that the pairs (x;,y;) are drawn from a i.i.d law.

e CCA looks for relationships between X and Y by looking for linear projections

of the samples X and Y,

alx; and 6Tyj,

such that corr(a’x;, 1y;) is high.

(o, 3) = argmax corr[a’, 3]
gerd cerd XY

COVX7y[OéT, @T]

— argmax
¢cRd ceRd \/VaI‘X laT] vary [37]
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where for two real valued functions f : X — R and g : Y — R we write

varlf] = Ex(f(x) - Ex[f(0)? == 3 (fm) -y f(x») ,

1=1

z—l

var(g] = Ex(g(y) - Eylg(y)])® = : Z ( 9(yi) — —Zg Y; ) :
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Unsupervised Techniques

both non-convex optimizations look for vectors in R?,
that is linear projections which summarize the data.

e Although non-convex, the optima can be computed through eigenvalue
decompositions of matrices.

e Courant-Weyl-Fisher minimax principle for Rayleigh quotients.

e Yet, these tools have limitations: linearity.

Kernel methods allow us to study nonlinear eigenfunctions and CCA-projections
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kernel- Principal Component Analysis [SSM98]

e Consider X as spanning H,, the two previous optimizations become

fi= argmax var((f, kx(x,))nl,
FEH N Fllr =1 f L{f1, o fj1} X

for1 <5 <n.

e Using the n x n kernel matrix K x, more precisely its centered counterpart

1 1
Kx=(0,—-1,,)Kx(I,—-1,.,).
x = ( - ) K x( - n)

The eigenfunctions f; are recovered through the eigenvalue/eigenvector pairs
(62', dz) of Kx,

Kx = EDE"
where D = diag(d) and E is an orthogonal matrix. Writing U = ED~/2 we
have that

fi() = Z Ui jk(wi, )

d;

with varx|f;(z)] = 2.
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kernel- Canonical Correlation Analysis [Aka01,BJ02]

e A direct adaptation of the CCA criterion to infinite dimensional RKHS,

(f) g) = argmax COVX’YKfa kX($> ')>HX7 <gv ky(y, ')>HX]

feEHx,9EHy \/VarX[<f, kx(x,:))H| vary (g, ky(y, ‘)>Hy] |

e This does not work numerically on finite samples. Denominator goes to zero.

e In [FBGO7], it is shown that using

(f,g) = argmax corrx,y|f, gl
) feXx,gey (VaI'X[f] + >\||fH2)(V3-I'Y[g] T )\||g||2)7

and letting A — 0 as n — oo works.
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kernel-Canonical Correlation Analysis [Aka01,BJ02]

e The finite sample estimates f™ and g™ can be recovered as

:Z@m>

where & and ( are the solutions of

(&,¢) = argmax (TKy Kx¢
£,CERY, ]
EN(K% +nAKx)é = (T(KZ2 +n\Ky)( =1

and
907,() Xza Zk?( XZa ) %() — YZa Zky YM 9

are the centered projections of (x;) and (y;) in Hx and Hy

EPAT’10 - M. Cuturi



