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Kernel Methods

A reasonably large academic subfield

e \Widespread popularity in machine learning now

Kernel Methods Automatic

for Remote Sensing Speech .

Data Analysis and Speaker Advan(c‘es‘i‘n\Kernel N‘Ieythods
Recognition __ SupportYectorleaming. _

.
ke Kemnal Hothods

in Computational Blology

e Gained momentum in the late 90's with the support vector machine,

e Rooted in much older maths.

e Kernel methods are a pluridisciplinary field, publications appearing in

o computer science (nips, journ. of machine learning, ICML..),
o statistics and functional analysis (annals of statistics..),

o optimization (Mathematical Programming..),

o Different application subfields (Neural Computation..)
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Kernel Methods

e Standard text-books:

o Introduction [SS02] -

o More about kernels [STCO04]
=

o More learning theory [SC08]

Kernel Hathods

o First chapters [STV04] =S
o “Mathematical” perspective [BTAQ3]|. The real deal: [BCR84].

e Some short surveys,

o journal papers [HHS08], [MMR+01]
o a survey on my webpage (local copy, not arxiv): key to all citations!

e On the web:

o Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, Stéphane Canu.
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Some terminology

Etymology : from old english cyrnel, diminutive of corn (seed)

the word kernel appears in different different contexts...

e The /linux kernel...

e Kernel of a linear operator of X': ker(L) = {z € X|L(x) = 0}.

e Kernel of a matrix in R4%?, j.e. its nullspace {x € R Ax = 0}.

e In set theory, for a function f: X — ), ker(f) = {(ZC :1:’)\ f(x) = f(z"}.
o Kernel of an integral transform T', T'f (u ft t)dt

e Smoothing kernel, a function k& > 0, k(u) = k(—u), ffooo k(u)du = 1.

T 2
o K(t,z,y) = W -5 solves heat equation K(t,xz,y) = A K(t,x,y)

sets, subspaces, one-variable, two-variables, three-variables function...
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Moral of the story

No need to look for a common or primitive meaning

e Kernel is just a word mathematicians fancy (unfortunately!)

e People enjoy it because of its vague “core” meaning.

e Don't feel you have missed something if you do not see the connection
between different kernel objects in mathematics. There might be none...

e Will mention some links during the lecture between different definitions.
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What is a kernel

In the context of these lectures...

e A kernel k is a function

k: XA XX R
(X7Y) - k(X7Y)

e which compares two objects of a space X, e.g....

o strings, texts and sequences,
o images, audio and video feeds, §J @ *Ili

;
. . L
o graphs, interaction networks and 3D structures H

) @ |

e whatever actually... time-series of graphs of images? graphs of texts?...
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Fundamental properties of a kernel

symmetric

k(x,y) = k(y,x).

positive-(semi)definite

for any finite family of points x1,--- ,x, of X, the matrix
k(x1,x1)  k(x1,%x2) - k(xi,x;) - k(x1,%x,)]
k(xo,x1) k(xo,x2) -+ k(x2,%x;) -+ k(x2,X,)
k= k(xz-:, X1) k(x;, Xo) - k(xz-:, X;) - : k'(XQ:, Xn,) =0
_k(x,n:, X1) k(xnj, Xg) - - k(xf,;, X;) - k(xn:, Xn)

is positive semidefinite (has a nonnegative spectrum).

K is often called the Gram matrix of {x1,---,x,} using k
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What can we do with a kernel?

EPAT’10 - M. Cuturi



The setting

e Pretty simple setting: a set of objects x1,--- ,x,, of X
e Sometimes additional information on these objects

o labels y; € {—1,1} or {1,--- , #(classes)},
o scalar values y; € R,
o associated object y; € VY

e A kernel k: X x X — R.
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

e The functional perspective: represent points as functions.
e The new or alternative dot-product perspective.
e Nonlinearity : linear combination of kernel evaluations.

e Summary of a sample through its kernel matrix.
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Represent any point in X' as a function

For every x, the map
x — k(x, )
associates to x a function k(x,-) from X to R.

e Suppose we have a kernel k£ on bird images

e Suppose for instance

EPAT’10 - M. Cuturi
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Represent any point in X’ as a function

e \We examine one image in particular: ’

e With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R? for simplicity.

schematic plot of & ( )

EPAT’10 - M. Cuturi
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Represent any point in X’ as a function

e |If the bird example was confusing...
/ / 2

s k(51 [7]) = (=1 7]+ 3)

e From a point in R? to a function defined over R?.

(@ x+15y) +.35

7777
',,,,I""',

7775 4

L7

L7

77777~

2,51

77
2L 77

(L LT
LT 7

1.5-

25

e We assume implicitly that the functional representation will be more useful

than the original representation.

13
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Dot-product perspective

e Suppose X = R4,
e The simplest kernel: k(x,y) = x'y.

e For a data sample X = {x1,X2, -+ ,X,}.

e In matrix form, X = [x; x5 - - Xx,| € R¥X™

e In standard linear algebra, the Gram matrix of X is

K = [XT = XTXx.

1 %3] 1 <ij<n
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Dot-product perspective

e Consider a different kernel kg(x,y) = exp (—M)

o

Kg = [kG(X%Xj)}lgi,an'

e obviously x! x; # ka(x;,y;)-
e is there a representation & € R*’ for each point such that e = ka(xy, x4)?

e Linear algebra to the rescue: K = PDPT, U = PVDPT, hence K = UTU,

providing U = [& & -+ &, | € R,
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Dot-product perspective

e |n summary, we have defined n vectors such that
ka(xi,x;5)] = [€¢]

o Great: for each x; we have a vector representation &;.
e Problem:

o this representation depends explicitly on the sample X.
o For a new x,,11, difficult to find &,+1 such that & ,&; = ka(xn+1,x;).

e We will see that there exists a mapping ¢, such that

o ¢: X — H where H is a dot-product space,
o which gives a dot product representation for k,

ka(x,y) = (¢(x),0(y) ).

for all points (x,y)...

EPAT’10 - M. Cuturi
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Decision functions as linear combination of kernel evaluations

e Linear decisions functions are a major tool in statistics, that is functions

f(x)=8"x+fo.
e Implicitly, a point x is processed depending on its characteristics z;,
d
f(x) = Zﬂiﬂfi + Bo.
i=1

the free parameters are scalars Bg, 31, , B4.

e Kernel methods yield candidate decision functions
F(x) =) ajk(x;,x) + ap.
j=1

the free parameters are scalars ag, v, + , (y,.

EPAT’10 - M. Cuturi
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Decision functions as linear combination of kernel evaluations

database {x;,2 =1,..., N}

kernel definition

weights o estimated
with a kernel machine

e f is any predictive function of interest of a new point x.

e Weights «v are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

e Imagine a little task: you have read 100 novels so far.

e You would like to know whether you will enjoy reading a new novel.

e A few options:

o read the book...
o have friends read it for you, read reviews.
o try to guess, based on the novels you read, if you will like it

EPAT’10 - M. Cuturi

20



The Gram matrix perspective

Two distinct approaches

e Define what features can characterize a book.

o Map each book in the library onto vectors
L1

S
W= —> =

typically the x;'s can describe...

> 7 pages, language, year 1st published, country,
> coordinates of the main action, keyword counts,
> author’s prizes, popularity, booksellers ranking

e Challenge: find a decision function using 100 ratings and features.

EPAT’10 - M. Cuturi
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The Gram matrix perspective

e Define what makes two novels similar,

o Define a kernel £ which quantifies novel similarities.
o Map the library onto a Gram matrix

k(bi,b1) k(bi,ba) -+ k(b1,bioo)
_ | k(b2 01) k(b2 b2) --+ K(b2, bioo)
| E(bn,b1)  k(bn,b2) -+ K(b1oo, b1oo)

e Challenge: find a decision function that takes this 100 x 100 matrix as an input.

EPAT’10 - M. Cuturi 22



The Gram matrix perspective

Given a new novel,

e with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have | found in the past that were
good indicators of my taste?

e with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did | find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.

EPAT’10 - M. Cuturi 23



The Gram matrix perspective

In summary

e A feature based analysis of a data-driven problem:

objects 01,--- ,0, —— featurevectors X = |x; X9 -+ X,| € RAxm

e A similarity based analysis of a data driven problem:

k(o1,01) k(o1,02) -+ k(o1,04)
objects 01,-++ ,0, — Gram K = ]‘3(02:, 01) k(02:, 02) k(Oz:, On) c RnXn
\k(on,01) k(on,02) -+ k(on,0n))

e Some parallels (can define K = XX or X = VK or Cholesky) but...

Algorithms use either features or (kernel) similarities.

EPAT’10 - M. Cuturi 24



The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset X3
I
X
X9 .
X
x 5 Krs 5, kernel matrix o

N

convex optimization

and Convex optimization (thanks to psdness of K, more later) to output the a's.
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Outline

e Mathematical considerations (< 80’s)

o Reproducing Kernel Hilbert Spaces
o positive-definiteness, negative definiteness etc..
o kernels, similarities and distances

e Defining kernels

o Standard kernels (< 80's)
o Statistical modeling & kernels (> 1998)
o Algebraic structures and kernels

e Kernel algorithms

o representer theorem

o unsupervised techniques, eigenfunctions of samples (> 1998)
o supervised learning, SVM (> 1995)

o density estimation and novelty detection (> 1999)

e Selecting kernels

o parameter tuning (> 00's)
o multiple kernel learning (> 2004)

EPAT’10 - M. Cuturi
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Mathematical Considerations

different definitions and properties of the same mathematical object

EPAT’10 - M. Cuturi
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space of functions

In the next slides we focus on

reproducing kernel Hilbert spaces (RKHS)

This term is ubiquitous in the kernel methods literature.

“Old” mathematics [MerQ09], [Aro50]. Survey in [BTAO3].

Reminder: a Hilbert space is a

o vector space, possibly infinite dimensional,
o equipped with a dot-product, i.e.
> a bilinear symmetric application
> which satisfies (x,x) > 0, equal to 0 only with x = 0.

o complete (all Cauchy sequences converge inside the space).

reproducing kernel... a new term.

EPAT’10 - M. Cuturi
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reproducing kernels

e Let H be a Hilbert space of real-valued functions on X.

Definition 1 (RKHS). H is said to be a reproducing kernel Hilbert space if

every linear map of the form Ly : f — f(x) from H to R is continuous for
any x 1 X.

Where is the reproducing kernel in this definition?
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reproducing kernels

e By the Riesz representation theorem
o Any continuous linear functional L(-) on H can be written uniquely (u, )

we hence have that:

vxe X, IlkxeH | f(x)=(f, kxn, Y[EH

ky i1s called the point-evaluation functional at the point x.

e Since 'H is a space of functions, ky is itself a function. £: X x X — R is
defined by

k(x,y) = k(y)-

e £k is the reproducing kernel of H and it is determined entirely by ‘H through
the Riesz representation theorem which guarantees the unicity of £y for each x.
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positive definite kernels

Definition 2 (Real-valued Positive Definite Kernels). A symmetric function
k:X xX — R is a positive definite (p.d.) kernel on X if

n

Z CiCj k (ZCi,ZCj) 2 O,

1,7=1
holds for anyn € N, z1,...,2, € X and cy...,¢c, € R.

With this definition, the set of p.d. kernels P(X) is a closed, convex pointed cone:

e VA >0,k p.d.kernel = Ak is p.d.

e Y\ >0,kq, ko p.d.kernel, \ky + (1 — A\)ko p.d. kernel.
e k p.d. kernel, —k p.d. kernel = k£ = 0.

o if k, € P(X) and lim, k,, = k then k € P(X).
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kernels: two definitions

e Have mathematicians screwed up again and used the term kernel separately?

reproducing kernels (functional analysis, topology)
?

£

positive definite kernels (positivity and linear algebra)

e |uckily, no screw up: the two notions are equivalent.
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Moore-Aronszajn (1950) theorem

Theorem 1. Let X be any set. An application X X X — R s a reproducing
kernel iff it is a positive definite kernel

e A first proof was given by Mercer (1909) when X’ is compact.

e Hence the Mercer kernel term sometimes used.

e In many applications compacity is never really mentioned...

e ... hence positive definite or reproducing are more accurate terms.

e In the general case the result was proved by Moore & Aronszajn in 1950
(separately).

EPAT’10 - M. Cuturi
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Moore-Aronszajn (1950) theorem, proof outline

o If kisark, k(x,y) = (k(x,"), k(y,")) = (k(y, ") k(x,")) = k(y,x),

n 2
E cicik(xi, X;) E k(x;,-) >0
1,7=1 H

o if kisa p.d. kernel,

o Define the vector space H = span{k(x,-)}.
o Define (-, )z for f =310 aik(xi,-) and g = 37| Bk(y;,-) as

= Z ifBik(xi,y ).

i,j=1

o even if {k(x,-)}xecx is not a l.i. family (i.e. no unicity of « or 3) we have

— Zaig(xi) = Zﬂzf(Y’L)

EPAT’10 - M. Cuturi
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o (-, ) is bilinear symmetric and p.d. through the p.d. of £.

o Cauchy-Schwartz is verified thanks to p.d. of the Gram matrix on all x;,y;.

[ozT 05] [Kx Kx,y] [a om] B [OzTKxa oTEyl] o
0% 5T Ky 0, 0 6TK>ZyO‘ ﬂTKyﬁ B

hence
IFIPNgll? = (o' Kxa)(8" Ky) > (o' Ky y6)* = (f,9)%

o Hence ||f|| =0 = f = 0 since

vx e X, |f(x)] = (f,k(x,)) < [[fVE(xx) = 0.

o H is a pre-Hilbertian. For any Cauchy sequence f,, in H,and x € X

[fm(X) = fn(X)] = (fn = fims B(%,2) ) < fow = IV R (%, %) — 0,

fn(x) is thus Cauchy in R and has thus a limit. f,, has thus a limit.
o We add all such limits to complete H into 'H.
o still a few steps more (show the r.k. of H is still k).

EPAT’10 - M. Cuturi
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The kernel paradigm

e A simple function £ that is p.d. defines a Hilbert space of functions:
o its elements,
@)
= Z a;k(x;, X
i=1

and Cauchy limits of such functions,
o their dot-product,

<fag>H: <Zaik(xz’a' Zﬂz YZ7° H — Z azﬁj Xzan
1=1

1,7=1

o their norm,

Hf||2 f fim = Z ok (X, Xj).

1,7=1

We usually focus on positive definite kernels but don't forget the reproducing story

EPAT’10 - M. Cuturi 37



Another alternative definition

Definition 3 (Reproducing Kernel). A real-valued function k : X x X — R is a
reproducing kernel of a Hilbert space 'H of real-valued functions on X if and
only if

(i) Vt € X, k(-,t) € H;

(i) Vt € X Vf € H, (f.k(-,1) = F(t).

e straightforward to prove equivalence with the first characterization.
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A word on continuity

Proposition 2. Let k be a positive denite kernel on a topological space X
and H the associated RKHS. If k(x,y) is continuous for all X,y € X, then all
the functions in 'H are continuous functions of X — R.

Proof. Let f be an arbitrary function in H,
F@) = FW) = {f, kG, ) = by, D= ARG ) = E(y )l

Remember that ||k(x, ) — k(y,-)[| = k(x,x) + k(y,y) — 2k(x,y).

EPAT’10 - M. Cuturi 39



A more intuitive perspective: Feature maps

Theorem 3. A function k on X X X 1s a positive definite kernel if and only if
there exists a set T and a mapping ¢ from X to I?(T), the set of real
sequences {us,t € T} such that Y, o |u]* < 0o, where

V(x,y) € X X X, k(x,y) =) ¢(x) = (9(x), d(¥))i2(x)

te’l

e A very popular perspective in the machine learning world.

e Equivalent to previous definitions, less stressed in the RHKS literature.

X — 000 = | 600

L der
where the ¢; are a set of — possibly infinite but countable — features.
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kernels — Gram matrices

o If X = {Xi}iEI In X,

KX = [k(Xi,Xj)] ~ 0.

v,5€l —

e If one applies any transformation of K x which keeps eigenvalues nonnegative,

r(K) is a valid positive definite matrix and hence a kernel on X.
o examples: K +t(t > 0),K?, e, ete.

e in fact, if K = PAPT, any transformation that preserves the spectrum’s
non-negativity would be ok.

e Yet... this kernel is only valid on X, the sample, not the whole space X'.

Meaning somehow... Gram matrices - kernels
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positive definite kernels and distances

e Kernels are often called similarities.
e the higher k(x,y), the more similar x and y.

e With distances, the lower d(x,y), the closer x and y.

e Many distances exist in the literature. Can they be used to define kernels?

what is the link between kernels and distances?

-
high similarity = small distance

. 2 2
o At least true for the Gaussian kernel k(x,y) = e~ Ix=vlI"/207

e Important theorems taken from [BCR84].
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Distances

Definition 4 (Distances, or metrics). A nonnegative-valued function d on
X x X is a distance if it satisfies, Vx,y,z € X:

(i) d(x,y) >0, and d(x,y) = 0 if and only if x =y (non-degeneracy)
(i) d(x,y) =d(y,x) (symmetry),
(ii1) d(x,z) < d(x,y) + d(y,z) (triangle inequality)

e Very simple example: if X' is a Hilbert space, ||x — y|| is a distance. It is
usually called a... Hilbertian distance.

e By extension, any distance d(x,y) which can be written as ||¢(x) — ¢(y)]|
where ¢ maps X to any Hilbert space is called a Hilbertian metric.

e Useful. To build Gaussian kernel, Laplace kernels k(x,y) = e tIx=vll

e Yet does not suffice:

EPAT’10 - M. Cuturi
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the missing link: negative definite kernels

Definition 5 (Negative Definite Kernels). A symmetric function ¢ : X x X — R
is a negative definite (n.d.) kernel on X if

n

> cicit (zi,5) <0 (1)

ij=1
holds for any n € N, x1,..., 2, € X and cy...,c, € R such that Z?Ilcz- = 0.
e Example ¢(x,y) = [[x — y|*

o prove by decomposing into ||x;]|? + ||x;||* — 2(x;, x; )

e NV(X) is also a closed convex cone.

important example: k is p.d. = —Fk is n.d.
Converse completely false.
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negative definite kernels & positive definite kernels

A first link between these two kernels:

Proposition 4. Let xo € X and let ¢ : X x X — R be a symmetric kernel. Let

def

@(Xa}f) — w(vaO) + ¢(y,330) — ¢(X>Y) - ¢($07530)-

Then k 1is positive definite < 1) is negative definite.

e Example: [|x — zo|* + ||y — zol|* — ||x — y||? is a p.d. kernel.
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Proof.

e = For x1, -+ ,Xp, and ¢1,- -+ ,¢cp st Y ¢; =0,
mn n
g cicip(xi,x5) = — E cici(x4,%x5) > 0.
i,j=1 i,7=1
e < Forxy, - ,xpand ¢y, -+ ,¢p, let co=—>"" . Set xg = xy. Then

0> Z cici (X, X;)

1,7=0

3 i) + 3 ik 0) + 3 cocy(oon ) + bl o).
1,7=1 i=1 j=1

- Z W(Xz’, -TO) + w(xﬁ ZEO) o ¢(X¢ay3') - w(ﬂjo,ilj‘o)] = Z Cz'ngO(XZ',Xj).
ny=1 ij=1

EPAT’10 - M. Cuturi 16



negative definite kernels & positive definite kernels

Proposition 5. For a p.d. kernel k > 0 on X x X, the following conditions are
equivalent

(1) —logk € N(X),
(i1) k' is positive definite for all t > 0.

If k satisfies either, k is said to be infinitely divisible,

Proof.

e —logk =1lim, . n(l— k%) which is the limit of a series of n.d. kernels if (%)
is true, hence (ii) = (7).

e conversely, if —logk € N(X) we use Proposition 4. Writing ¢y = —log k and
choosing o € X we have

kt — e—t¢(X,Y) — 6t¢($0,$0)etSO(X,Y)e—t¢(xaw0)e—t¢(y,w0) e P(X)
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negative definite kernels: (Hilbertian distance)? + ...

Proposition 6. Let ¢ : X X X be a n.d. kernel. Then there is a Hilbert space
H and a mapping ¢ from X to H such that

(x,y) = [lo(x) — o(y)II* + F(x) + f(y), (2)

where f: X — R. IfyY(x,x) =0 for all x € X then f can be chosen as zero. If
the set {(x,y)|¥(x,y) = 0} is exactly {(x,x),x € X'} then /1 is a Hilbertian
distance.

Proof. Fix xg and define

p(o3) L [ 0) + (., 70) — (o, y) — (o, )],

By Proposition @ ¢ is p.d. hence there is a RKHS and mapping ¢ such that
p(x,y) = (#(x), #(y) ). Hence

lo(x) — d(¥)]I* = (x,x) + (¥, y) — 20(x,y)

— p(xy) (%, %) —g V(y.y)
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distances & negative definite kernels

e whenever a n.d. kernel

o vanishes on the diagonal, i.e. on {(x,x),xz € X'},
o is 0 only on the diagonal, to ensure non-degeneracy,

— /1) is a Hilbertian distance for X.

e More generally, for a n.d. kernel 1,

\/@D(X,y) _Yxx) $y.y) is a (pseudo)metric for X .

e On the contrary, to each distance does not always correspond a n.d. kernel
(Monge-Kantorovich distance, edit-distance etc..)
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In Summary...

e Set of distances on X is D(X), Negative definite kernels N'(X'), positive and
infinitely divisible positive kernels P(X) and P (X) respectively.
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Some final remarks on N (X) and P(X)

e N(X) is a cone. Additionally,

o ifp e N(X),VeeR, Y+ ceNX).
o if (x,x) >0 forallz e X, ™ € N(X) for 0 < a < 1 since

o 0% > —a—1 =ty
Y _F(l—a)/o t (1 —e*)dt

and log(1 + ¢) € N(X) since

t

log(1+v) = /000(1 — e_w)%dt.

o if ¢ > 0, then log(v)) € N since

log(v) = lim log (w + %) = lim log (1 + cyp) — logc

C— 00 C— OO
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Some final remarks on D(X), N(X),P(X)

e P(X) is a cone. Additionally,

o The pointwise product kiks of two p.d. kernels if a p.d. kernel
o k" € P(X) forn € N. (k+¢)" too...as well as exp(k) € P(X):

ookt

> exp(k) = Zizoﬁ' a limit of p.d. kernels.
> exp(k) = exp(—(—k)) where —k € N (X).

e The sum of two infinitely divisible kernels is not necessarily infinitely divisible.

o —log ki, and —log ko might be in N(X), but —log(ki + k2)?...

EPAT’10 - M. Cuturi
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Intuitively an important issue...

Remember that kernel methods drop all previous information

dataset X3
T X4N
X
X9 .
X
x 5 Krs 5, kernel matrix o

N

convex optimization

to proceed exclusively with K.

if the kernel K is poorly informative, the optimization cannot be very useful...
it is therefore crucial that the kernel quantifies noteworthy similarities.
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Kernels on vectors

(relatively) easy case: we are only given feature vectors,
with no access to the original data.

e Reminder (copy paste of previous slide!): for a family of kernels k1, - - -

o The sum > ", Ak, is p.d., given A1,..., A, >0
o The product ki*--- k% is p.d., given ay,...,a, € N
o lim, . ky, is p.d. (if the limit exists!).

e Using these properties we can prove the p.d. of
o the polynomial kernel k,(z,y) = ({(x,y) +b)¢, b>0,d €N,

I . _
o the Gaussian kernel k,(z,y) =e 202 which can be rewritten as

=2 Iyli? = (x,y )
ko(z,y) = [6 20% € 2"2] ' [z; il
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Kernels on vectors

o the Laplace kernels, using some n.d. kernel weaponry,
ka(z,y) =e MxYI" 0 X 0<a<2
o the all-subset Gaussian kernel in R¢,
d
k(e,y) =] (1 X ae—b(xz-—yn?) - ¥ o) g=bllxr—y1l*
1=1 IC{l, ad}
o A variation on the Gaussian kernel: Mahalanobis kernel,

ks(z,y) = e ¥ ET6y),

idea: correct for discrepancies between the magnitudes and correlations of
different variables.

o Usually X is the empirical covariance matrix of a sample of points.
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Kernels on vectors

e These kernels can be seen as meta-kernels which can use any feature
representation.

e Example: Gaussian kernel of Gaussian kernel feature maps,

= lly=)? Coe | 252
kGQ(X:Y):kG e 22 ,e 202 = e A2

e Not sure this is very useful though!

e Indeed, the real challenge is not to define funky kernels,

the challenge is to tune the parameters b, d, o, X..
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Kernels on structured objects

e Structured objects?

o texts, webpages, documents

o sounds, speech, music,

o images, video segments, movies,

o 3d structures, sequences, trees, graphs

e Structured objects means

o objects with a tricky structure,

o which cannot be simply embedded in a vector space of small dimensionality,
o without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space
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Vectors in R’} and Histograms

e A powerful and popular feature representation for structured objects:
histograms of smaller building-blocks of the object:

& Color Inspector 3D (¥2.0) /images/baboon400.jpg
File Options Help

Color Space: Display: = Humber of Color Cells ©

160000 Pixels, 271 Colors Position ®: 210w 222  Color: RGB(248, 68, 38) Frequency: 3868 {2.4%)

“lle
[Red [Green [Blue [Frequency |%
38 128 148 3 000z

38 128 188 3 0002
148 a8 e 28 0016
158 98 38 132 0.083
168 ek} [at=} 160 0100
188 48 a8 T8 0174
158 98 128 54 0034
g a8 a bil} 0035

1] 1] 1R niny

Brightness { +0) Contrast (x 1.0} Saturation (x1.0) Color Rotation (0°) Perspective Srale

e histograms are simple instances of probability measures,

o nonnegative coordinates, sum up to 1.
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Standard metrics for Histograms

Information geometry, introduced yesterday, studies distances between densities.

e Reference : [ANO1]

e An abridged bestiary of negative definite distances on the probability
simplex:

Yip(0,0") =h (
X2 ; — i 01‘|‘07{ , TV

¢H299 Zl\/7 \/7|2 ¢H1(979):Z|\/97i_\/974‘|'

0+ 0\  h()+ h(0)
2 >_ 2

Y

e Recover kernels through

k(0,0 =e ™, t>0
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Information Diffusion Kernel [LL05,ZLC05]

e Solve the heat equation on the multinomial manifold, using the Fisher metric

e Approximate the solution with

k’zd(@, 9/) — 6_%arCCOSQ(\/§.\/@)’

e arccos? is the squared geodesic distance between 6 and ¢’ as elements from

the unit sphere (6; — 1/0,).
e In [ZLCO5]: the use of

kEd(H; 9/) _ 6—%arccos(\/§-\/@))

Is advocated.

2

e the geodesic distance is a n.d. kernel on the whole sphere (arccos” is not).
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Transportation Metrics for Histograms

Beyond information geometry, the family of transportation distances.

e Suppose r = (1, - ,7q) and ¢ = (c1,- -+, cq) are two histograms in R’}

e Define the set of transportations

U(r,c) ={F e RY*|F1=r,F'1 =c}.

e T[ransportation distances between r and c:

deost(rc) = - é%i(? o cost(F').

Monge-Kantorovich: cost(F') = (F, D) where D is a n.d. matrix.

® d.s is not n.d. in the general case.

kcost(rc) :/ 6_C05t(F)‘
FeU(r,c)

e works when cost = 0: the volume of U(r,c) is a p.d. kernel of r and c. [Cut07]

e Alternatives:

EPAT’10 - M. Cuturi 62



Statistical Modeling and Kernels

Histograms cannot always summarize efficiently the structures of X

e Statistical models of complex objects provide richer explanations:

o Hidden Markov Models for sequences and time-series,
o VAR, VARMA, ARIMA etc. models for time-series,

o Branching processes for trees and graphs
o Random Markov Fields for images etc.

e {x1, -+ ,X,} are interpreted as i.i.d realizations of one or many densities on X

e These densities belong to a model {py, 0 € © C R9}

Can we use generative (statistical) models
in
discriminative (kernel and metric based) methods?
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Fisher Kernel

e The Fisher kernel [JH99] between two elements x,y of X is

) TJT1 5“1199(3’)
] 2 90

) = (Dot

o 6 has been selected using sample data (e.g. MLE),
o ng is the Fisher information matrix computed in 6.

;)

e The statistical model {pg, 0 € O} provides:

o finite dimensional features through the score vectors,

o A Mahalanobis metric associated with these vectors through Jj;.

e Alternative formulation:

ky(z,y) =e o

with the meta-kernel idea.
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Fisher Kernel Extended [TKR+02,5SG02]

e Minor extensions, useful for binary classification:
e Estimate él and ég for each class respectively,

e consider the score vector of the likelihood ratio

H1n P (%)

Po, (%)

Qs 5. 1 X .
91,02 ov 9=(01,0) |’

where ¥ = (01, 0) is in ©2,

e Use this logratio’'s score vector to propose instead the kernel

(x,y) = @9, 5, (%) D9, 4.(¥)-
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Mutual Information Kernel: densities as feature extractors

e More bayesian flavor — drops maximum-likelihood estimation of 6. [See(02]
e Instead, use prior knowledge on {pg, 0 € O} through a density w on ©

e Mutual information kernel k_:

ko, y) = /@ po(x)pa(y) w(db).

e The feature maps 0 < py(x) < 1 and 0 < py(y) < 1.

k., is big whenever many common densities py
score high probabilities for both x and y

e Explicit computations sometimes possible, namely conjugate priors.

e Example: context-tree kernel for strings.
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Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximum a posteriori approximation of the Ml kernel.

e What? How? by setting the prior w to the multivariate Gaussian density

an approximation known as Laplace’s method,

e Writing 911 po ()
n pg(x
P(z) = Vylnps(z) = ;999 ‘é

we get

A

log po() ~ log py() + (x)(0 — ).
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Mutual Information Kernel & Fisher Kernels

e Using NV (0, Jé_l) for w yields

k(z,y) = /@ po(x)po(y) w(d0),

~C / log p;(2)+0 ()T (0-0) Jlog ps(y)+@(y) " (6-6) ,—(6—0)"J;(0-0) 49
©

Tin A N 7.(n_A
=Cpé(:c)pé(y)/ e(P(@)+2())" (6-0)+(0-0)"J5(6-0) 49
S

_ C/pé(x)pé(y)e%<<1><x>+<1><y>>Tng<<I><x>+c1><y>>

e the kernel
k(x,y)

k(z,y) =
VE(z, 2)k(y,y)
is equal to the Fisher kernel in exponential form.
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Marginalized kernels - Graphs and Sequences

e Similar ideas: leverage latent variable models. [TKA02,KTI03]

e For location or time-based data,

o the probability of emission of a token x; is conditioned by

o an unobserved latent variable s; € §, where § is a finite space of possible

states.

e for observed sequences x = (x1, - , %), ¥ = (Y1, ,Yn), Sum over all
possible state sequences the weighted product of these probabilities:

Kzy) =) > p(slz) p(s'|y) & (2, 5) 5 (y,5))

seS s’'eS

e closed form computations exist for graphs & sequences.
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Kernels on MLE parameters

e Use model directly to extract a single representation from observed points:

A A

T — Oy, y'_>0ya

through MLE for instance.

e compare x and y through a kernel kg on O,

k(z,y) = ko (fx, by).
e Bhattacharrya affinities:
bax,) = [ ()95, (2)7dz

for 3 > 0.
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Semigroup Kernels : Building blocks

Loose algebraic structure: Semigroups [BCR84]

e Importance: unifying theory for many kernels, constructive perspective.

e a semigroup (S,+) is a set S # () endowed with an associative
composition + with neutral element O.

e An involutive semigroup (S, +, *) is endowed with an involution * : S — S
such that Vx in S, (2*)* = .

e Examples:

o § is the set of strings, 4 is the concatenation, 0 is the empty string. x is either
the identity or the operation ABC'D — DCBA.

o S is a group, and * is the inverse. e.g. (RY, 4, —)

o Sis R% with the + operation and x is the identity.

e We only consider abelian (4 is commutative) semigroups.
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Semigroup Kernels

e a semigroup kernel is a kernel k defined as

def 5k
k(z,y) = oz +y%),

where ¢ : § — R.
e — quantify similarity by looking only at x + y*.

e Examples in R?,
k(z,y) = p(x —y), =*(x)=—uz,
or
k(z,y) = o(x +y), =*(z)=u

e Example in M;(R%), the space of probability measures on R?,

def 1
k(p, p') = ,

et (152)
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Semigroup Kernels and Semicharacters

e Semicharacters: real-valued function p on an Abelian semigroup (S, +) s.t.

(i) p(0) =1, -
(i) Vs, t €S, p(s+1t) = p(s)p(t),
(iii) Vs € S, p(s) = p(s*).

e For (IR{+, +,1d), semicharacters are exactly functions s — e™s. indeed,

o eA(s—l—t) — eASpAt

e For (R, +,—), semicharacters are exactly functions s — €' indeed,

o eiA(s—t) _ eiAse—i)\t’ piAS — o—ids

e S is the set of bounded semicharacters.

The building blocks of (bounded) semigroup kernels are semicharacters.
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Semigroup Kernels and Semicharacters

e Proved in a fundamental theorem of Bochner [Boc33|, generalized by [BCR84]:

Theorem 7 (Integral representation of p.d. functions). A bounded function

@5 — Ris p.d. if and only if it there exisls a non-negative measure w on
S such that:

A~

S
In that case the measure w s unique.

o(s) = / o(s) dw(p).

e Proof idea

o Semicharacters are extreme rays of the cone of positive definite kernels.
o Choquet's theory helps us prove that any point in that cone is a convex
combination of extreme rays (a barycentre)
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Bochner Theorems in (RY, +, —) and (R<, +, Id)

e x = —: 3! non-negative measure w on R? s.t.
. T
pla) = [ e rdotr)
Rd

¢ is the Fourier transform of a non-negative measure w on R¢.

o Kernels of the type k(x,y) = p(x — y) also known as Radial Basis
Functions have such a decomposition.

e x = ld: Suppose k is bounded & s.t. k(x,y) = ¥»(x + y). 3! non-negative
measure w on RY s.t.

via) = [ e rdatr);

1) is the Laplace transform of a non-negative measure w on R<.
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