EPAT 2010

Kernel Methods

Definitions & Kernel Design

Marco Cuturi

EPAT'10 - M. Cuturi

Kernel Methods

A reasonably large academic subfield

• Widespread popularity in machine learning now



- Gained momentum in the late 90's with the support vector machine,
- Rooted in much older maths.
- Kernel methods are a pluridisciplinary field, publications appearing in
 - computer science (*nips, journ. of machine learning, ICML..*),
 - statistics and functional analysis (annals of statistics..),
 - optimization (*Mathematical Programming..*),
 - Different application subfields (*Neural Computation..*)

Kernel Methods

- Standard text-books:
 - Introduction [SS02]
 - More about kernels [STC04]
 - More learning theory [SC08]
 - First chapters [STV04]
 - "Mathematical" perspective [BTA03]. The real deal: [BCR84].
- Some short surveys,
 - ∘ journal papers [HHS08], [MMR+01]
 - a survey on my webpage (local copy, not arxiv): key to all citations!
- On the web:
 - Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, Stéphane Canu.

Some terminology

Etymology : from old english *cyrnel*, diminutive of corn (seed)

the word kernel appears in different different contexts...

- The *linux* kernel...
- Kernel of a linear operator of \mathcal{X} : $\ker(L) = \{x \in \mathcal{X} | L(x) = 0\}.$
- Kernel of a matrix in $\mathbb{R}^{d \times d}$, *i.e.* its nullspace $\{\mathbf{x} \in \mathbb{R}^d | A\mathbf{x} = \mathbf{0}\}$.
- In set theory, for a function $f : \mathcal{X} \mapsto \mathcal{Y}$, $\ker(f) = \{(x, x') | f(x) = f(x')\}$.
- Kernel of an integral transform T, $Tf(u) = \int_{t_1}^{t_2} k(t, u) f(t) dt$
- Smoothing kernel, a function $k \ge 0, k(u) = k(-u), \int_{-\infty}^{\infty} k(u) du = 1.$

•
$$K(t,x,y) = \frac{1}{(4\pi t)^{d/2}}e^{-\frac{\|x-y\|^2}{4t}}$$
 solves heat equation $K(t,x,y) = \Delta_x K(t,x,y)$

sets, subspaces, one-variable, two-variables, three-variables function...

Moral of the story

No need to look for a common or primitive meaning

- Kernel is just a word mathematicians fancy (unfortunately!)
- People enjoy it because of its vague "core" meaning.

• Don't feel you have missed something if you do not see the connection between different *kernel* objects in mathematics. There might be none...

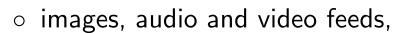
• Will mention some links during the lecture between different definitions.

What is a kernel

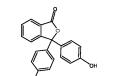
In the context of these lectures...

• A kernel k is a function

- which compares two objects of a space \mathcal{X} , e.g...
 - $\circ\,$ strings, texts and sequences,



- $\circ\,$ graphs, interaction networks and 3D structures
- whatever actually... time-series of graphs of images? graphs of texts?...



Fundamental properties of a kernel

symmetric

$$k(\mathbf{x}, \mathbf{y}) = k(\mathbf{y}, \mathbf{x}).$$

positive-(semi)definite

for any *finite* family of points $\mathbf{x}_1, \cdots, \mathbf{x}_n$ of \mathcal{X} , the matrix

$$K = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_i) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_i) & \cdots & k(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ k(\mathbf{x}_i, \mathbf{x}_1) & k(\mathbf{x}_i, \mathbf{x}_2) & \cdots & k(\mathbf{x}_i, \mathbf{x}_i) & \cdots & k(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & k(\mathbf{x}_n, \mathbf{x}_2) & \cdots & k(\mathbf{x}_n, \mathbf{x}_i) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix} \succeq 0$$

is positive semidefinite (has a nonnegative spectrum).

K is often called the **Gram matrix** of $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ using k

What can we do with a kernel?

The setting

- Pretty simple setting: a set of objects $\mathbf{x}_1, \cdots, \mathbf{x}_n$ of \mathcal{X}
- Sometimes additional information on these objects
 - \circ labels $\mathbf{y}_i \in \{-1,1\}$ or $\{1,\cdots,\#(\mathsf{classes})\}$,
 - $\circ \,$ scalar values $\mathbf{y}_i \in \mathbb{R}$,
 - \circ associated object $\mathbf{y}_i \in \mathcal{Y}$

• A kernel $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$.

A few intuitions on the possibilities of kernel methods

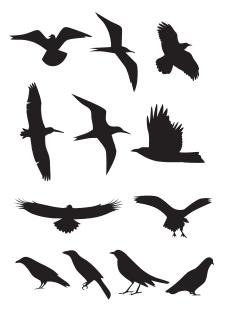
Important concepts and perspectives

- The functional perspective: represent **points as functions**.
- The new or alternative dot-product perspective.
- Nonlinearity : linear combination of kernel evaluations.
- Summary of a sample through its kernel matrix.

Represent any point in ${\mathcal X}$ as a function

For every x, the map $\mathbf{x} \longrightarrow k(\mathbf{x}, \cdot)$ associates to x a function $k(\mathbf{x}, \cdot)$ from \mathcal{X} to \mathbb{R} .

• Suppose we have a kernel k on bird images



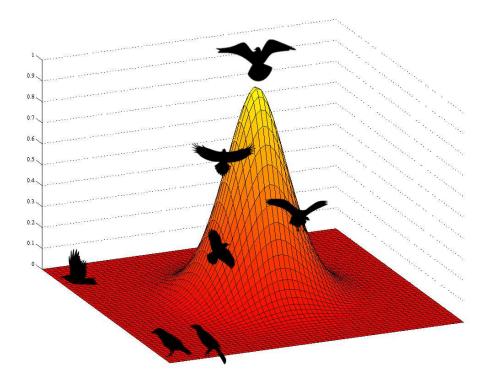
• Suppose for instance

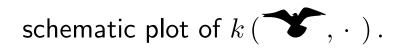
$$k(\mathbf{F}, \mathbf{F}) = .32$$

Represent any point in ${\mathcal X}$ as a function

• We examine one image in particular:

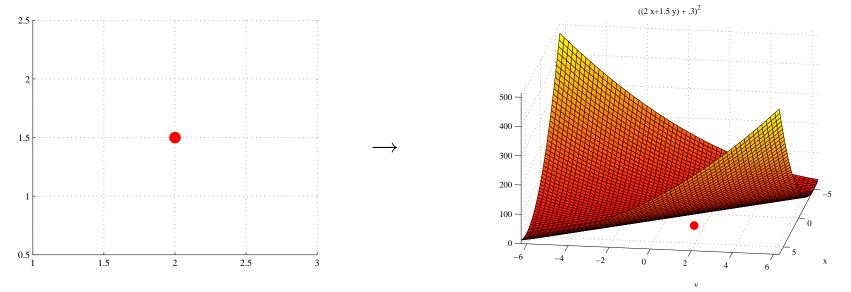
 With kernels, we get a representation of that bird as a real-valued function, defined on the space of birds, represented here as R² for simplicity.





Represent any point in ${\mathcal X}$ as a function

- If the bird example was confusing...
- $k\left(\begin{bmatrix}x\\y\end{bmatrix},\begin{bmatrix}x'\\y'\end{bmatrix}\right) = \left(\begin{bmatrix}x & y\end{bmatrix}\begin{bmatrix}x'\\y'\end{bmatrix} + .3\right)^2$
- From a point in \mathbb{R}^2 to a function defined over \mathbb{R}^2 .



 We assume implicitly that the functional representation will be more useful than the original representation.

Dot-product perspective

- Suppose $\mathcal{X} = \mathbb{R}^d$.
- The simplest kernel: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$.
- For a data sample $X = {\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n}$.

• In matrix form,
$$X = \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{d \times n}.$$

• In standard linear algebra, the Gram matrix of X is

$$K = \left[\mathbf{x}_i^T \mathbf{x}_j\right]_{1 \le i,j \le n} = X^T X.$$

Dot-product perspective

• Consider a different kernel $k_G(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{\sigma^2}\right)$,

$$K_G = \left[k_G(\mathbf{x}_i, \mathbf{x}_j)\right]_{1 \le i, j \le n}$$

• obviously
$$\mathbf{x}_i^T \mathbf{x}_j \neq k_G(\mathbf{x}_i, \mathbf{y}_j)$$
.

- is there a representation $\xi_i \in \mathbb{R}^{??}$ for each point such that $\xi_i^T \xi_j = k_G(\mathbf{x}_i, \mathbf{x}_j)$?
- Linear algebra to the rescue: $K = PDP^T$, $U = P\sqrt{D}P^T$, hence $K = U^TU$, providing $U = \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \xi_1 & \xi_2 & \cdots & \xi_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{n \times n}$.

Dot-product perspective

• In summary, we have defined n vectors such that

$$\left[k_G(\mathbf{x}_i, \mathbf{x}_j)\right] = \left[\xi_i^T \xi_j\right]$$

• Great: for each \mathbf{x}_i we have a vector representation ξ_i .

• Problem:

- \circ this representation depends explicitly on the sample X.
- For a new \mathbf{x}_{n+1} , difficult to find ξ_{n+1} such that $\xi_{n+1}^T \xi_j = k_G(\mathbf{x}_{n+1}, \mathbf{x}_j)$.

• We will see that there exists a mapping ϕ , such that

- $\circ \ \phi: \mathcal{X} \to \mathcal{H} \text{ where } \mathcal{H} \text{ is a dot-product space,}$
- \circ which gives a dot product representation for k,

$$k_G(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle.$$

for all points (\mathbf{x}, \mathbf{y}) ...

EPAT'10 - M. Cuturi

Decision functions as linear combination of kernel evaluations

• Linear decisions functions are a major tool in statistics, that is functions

$$f(\mathbf{x}) = \beta^T \mathbf{x} + \beta_0.$$

• Implicitly, a point \mathbf{x} is processed depending on its characteristics x_i ,

$$f(\mathbf{x}) = \sum_{i=1}^{d} \boldsymbol{\beta}_{i} x_{i} + \boldsymbol{\beta}_{0}.$$

the free parameters are scalars $\beta_0, \beta_1, \cdots, \beta_d$.

• Kernel methods yield candidate decision functions

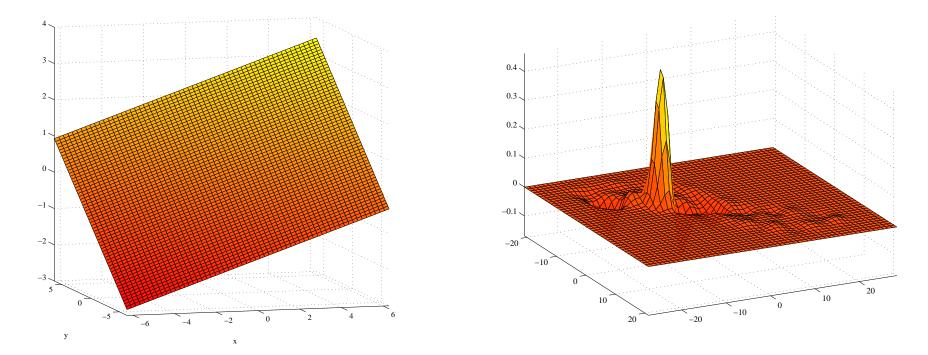
$$f(\mathbf{x}) = \sum_{j=1}^{n} \alpha_j k(\mathbf{x}_j, \mathbf{x}) + \alpha_0.$$

the free parameters are scalars $\alpha_0, \alpha_1, \cdots, \alpha_n$.

EPAT'10 - M. Cuturi

Decision functions as linear combination of kernel evaluations

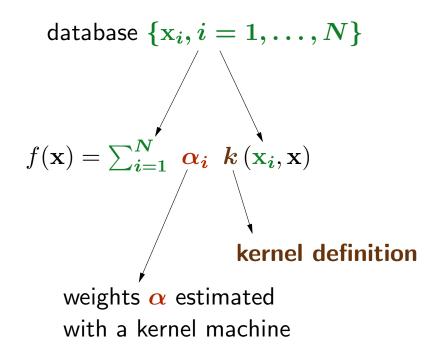
• linear decision surface / linear expansion of kernel surfaces (here $k_G(\mathbf{x}_i, \cdot)$)



- Kernel methods are considered **non-linear** tools.
- Yet not completely "nonlinear" \rightarrow only one-layer of nonlinearity.

kernel methods use the data as a functional base to define decision functions

Decision functions as linear combination of kernel evaluations



- f is any predictive function of interest of a new point \mathbf{x} .
- Weights α are **optimized** with a kernel machine (*e.g.* support vector machine)

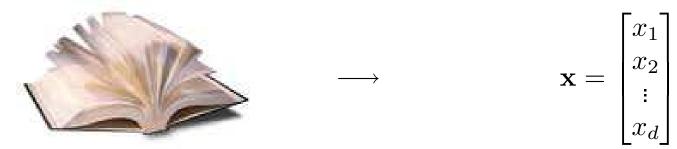
intuitively, kernel methods provide decisions based on how similar a point x is to each instance of the training set

• Imagine a little task: you have read 100 novels so far.

- You would like to know whether you will enjoy reading a **new** novel.
- A few options:
 - read the book...
 - $\circ\,$ have friends read it for you, read reviews.
 - $\circ\,$ try to guess, based on the novels you read, if you will like it

Two distinct approaches

- Define what **features** can characterize a book.
 - $\circ~$ Map each book in the library onto vectors



typically the x_i 's can describe...

- \triangleright # pages, language, year 1st published, country,
- ▷ coordinates of the main action, keyword counts,
- > author's prizes, popularity, booksellers ranking
- Challenge: find a decision function using 100 ratings and features.

- Define what makes two novels similar,
 - \circ Define a kernel k which quantifies novel similarities.
 - $\circ~$ Map the library onto a Gram matrix

• Challenge: find a decision function that takes this 100×100 matrix as an input.

Given a new novel,

- with the features approach, the prediction can be rephrased as what are the features of this new book? what features have I found in the past that were good indicators of my taste?
- with the **kernel approach**, the prediction is rephrased as **which novels this book is similar or dissimilar to?** what **pool of books** did I find the most influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.

In summary

• A feature based analysis of a data-driven problem:

objects
$$o_1, \dots, o_n \longrightarrow$$
 feature vectors $X = \begin{bmatrix} \vdots & \vdots & \dots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ \vdots & \vdots & \dots & \vdots \end{bmatrix} \in \mathbb{R}^{\mathbf{d} \times n}$

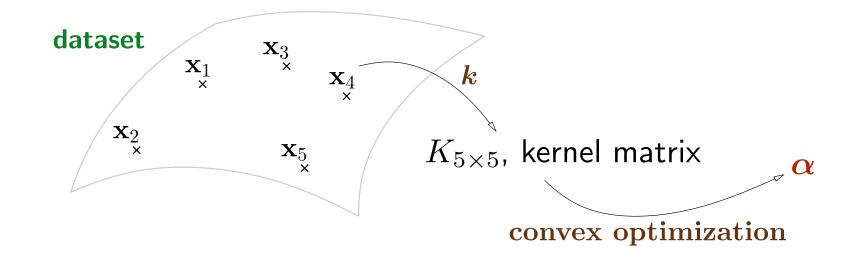
• A similarity based analysis of a data driven problem:

objects
$$o_1, \dots, o_n \to \text{Gram } K = \begin{bmatrix} k(o_1, o_1) & k(o_1, o_2) & \dots & k(o_1, o_n) \\ k(o_2, o_1) & k(o_2, o_2) & \dots & k(o_2, o_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(o_n, o_1) & k(o_n, o_2) & \dots & k(o_n, o_n) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

• Some parallels (can define $K = X^T X$ or $X = \sqrt{K}$ or Cholesky) but...

Algorithms use either features or (kernel) similarities.

in kernel methods, clear separation between the kernel...



and **Convex optimization** (thanks to psdness of K, more later) to output the α 's.

Outline of the lectures

Outline

- Mathematical considerations ($\leq 80's$)
 - Reproducing Kernel Hilbert Spaces
 - $\circ\,$ positive-definiteness, negative definiteness etc..
 - $\circ\,$ kernels, similarities and distances
- Defining kernels
 - Standard kernels ($\leq 80's$)
 - \circ Statistical modeling & kernels (> 1998)
 - Algebraic structures and kernels
- Kernel algorithms
 - \circ representer theorem
 - \circ unsupervised techniques, eigenfunctions of samples (≥ 1998)
 - \circ supervised learning, SVM (≥ 1995)
 - \circ density estimation and novelty detection (≥ 1999)
- Selecting kernels
 - parameter tuning $(\geq 00's)$
 - \circ multiple kernel learning (≥ 2004)

Mathematical Considerations

different definitions and properties of the same mathematical object

space of functions

• In the next slides we focus on

reproducing kernel Hilbert spaces (RKHS)

- This term is ubiquitous in the kernel methods literature.
- "Old" mathematics [Mer09], [Aro50]. Survey in [BTA03].
- Reminder: a Hilbert space is a
 - vector space, possibly infinite dimensional,
 - \circ equipped with a dot-product, *i.e.*
 - ▷ a bilinear symmetric application
 - \triangleright which satisfies $\langle x, x \rangle \geq 0$, equal to 0 only with x = 0.
 - complete (all Cauchy sequences **converge** inside the space).
- reproducing kernel... a new term.

reproducing kernels

• Let \mathcal{H} be a Hilbert space of real-valued functions on \mathcal{X} .

Definition 1 (RKHS). \mathcal{H} is said to be a reproducing kernel Hilbert space if every linear map of the form $L_{\mathbf{x}} : f \mapsto f(\mathbf{x})$ from \mathcal{H} to \mathbb{R} is continuous for any \mathbf{x} in \mathcal{X} .

Where is the **reproducing kernel** in this definition?

reproducing kernels

• By the Riesz representation theorem

• Any continuous linear functional $L(\cdot)$ on \mathcal{H} can be written uniquely $\langle \mathbf{u}, \cdot \rangle_{\mathcal{H}}$ we hence have that:

$$\forall \mathbf{x} \in \mathcal{X}, \exists ! k_{\mathbf{x}} \in \mathcal{H} \mid f(\mathbf{x}) = \langle f, k_{\mathbf{x}} \rangle_{\mathcal{H}}, \quad \forall f \in \mathcal{H}$$

 $k_{\mathbf{x}}$ is called the point-evaluation functional at the point \mathbf{x} .

• Since \mathcal{H} is a space of functions, k_x is itself a function. $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is defined by

$$k(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} k_{\mathbf{x}}(\mathbf{y}).$$

 k is the reproducing kernel of H and it is determined entirely by H through the Riesz representation theorem which guarantees the unicity of k_x for each x.

positive definite kernels

Definition 2 (Real-valued Positive Definite Kernels). A symmetric function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive definite (p.d.) kernel on \mathcal{X} if

$$\sum_{i,j=1}^{n} c_i c_j k\left(x_i, x_j\right) \ge 0,$$

holds for any $n \in \mathbb{N}, x_1, \ldots, x_n \in \mathcal{X}$ and $c_1 \ldots, c_n \in \mathbb{R}$.

With this definition, the set of p.d. kernels $\mathcal{P}(\mathcal{X})$ is a closed, convex pointed cone:

- $\forall \lambda \ge 0, k \text{ p.d.kernel} \Rightarrow \lambda k \text{ is p.d.}$
- $\forall \lambda \geq 0, k_1, k_2$ p.d.kernel, $\lambda k_1 + (1 \lambda)k_2$ p.d. kernel.
- k p.d. kernel, -k p.d. kernel $\Rightarrow k = 0$.
- if $k_n \in \mathcal{P}(\mathcal{X})$ and $\lim_{n \infty} k_n = k$ then $k \in \mathcal{P}(\mathcal{X})$.

kernels: two definitions

• Have mathematicians screwed up again and used the term kernel separately?

reproducing kernels (functional analysis, topology) $\stackrel{?}{\neq}$ positive definite kernels (positivity and linear algebra)

• luckily, no screw up: the two notions are equivalent.

Moore-Aronszajn (1950) theorem

Theorem 1. Let \mathcal{X} be any set. An application $\mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a reproducing kernel iff it is a positive definite kernel

- A first proof was given by Mercer (1909) when \mathcal{X} is compact.
- Hence the *Mercer* kernel term sometimes used.
- In many applications compacity is never really mentioned...
- ... hence *positive definite* or *reproducing* are more accurate terms.
- In the general case the result was proved by Moore & Aronszajn in 1950 (separately).

Moore-Aronszajn (1950) theorem, proof outline

• If k is a r.k., $k(\mathbf{x}, \mathbf{y}) = \langle k(\mathbf{x}, \cdot), k(\mathbf{y}, \cdot) \rangle = \langle k(\mathbf{y}, \cdot), k(\mathbf{x}, \cdot) \rangle = k(\mathbf{y}, \mathbf{x}),$

$$\sum_{i,j=1}^{n} c_i c_j k(\mathbf{x}_i, \mathbf{x}_j) = \left\| \sum_{i=1}^{n} k(\mathbf{x}_i, \cdot) \right\|_{\mathcal{H}}^2 \ge 0.$$

- if k is a p.d. kernel,
 - Define the vector space $\tilde{\mathcal{H}} = \operatorname{span}\{k(\mathbf{x}, \cdot)\}$. • Define $\langle \cdot, \cdot \rangle_{\tilde{\mathcal{H}}}$ for $f = \sum_{i=1}^{m} \alpha_i k(\mathbf{x}_i, \cdot)$ and $g = \sum_{j=1}^{n} \beta_j k(\mathbf{y}_j, \cdot)$ as

$$\langle f,g \rangle = \sum_{i,j=1}^{m,n} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{y}_j).$$

 \circ even if $\{k(\mathbf{x}, \cdot)\}_{\mathbf{x} \in \mathcal{X}}$ is not a l.i. family (*i.e.* no unicity of α or β) we have

$$\langle f, g \rangle = \sum_{i=1}^{m} \alpha_i g(\mathbf{x}_i) = \sum_{j=1}^{n} \beta_i f(\mathbf{y}_i).$$

• $\langle \cdot, \cdot \rangle_{\tilde{\mathcal{H}}}$ is **bilinear symmetric** and **p.d.** through the p.d. of k.

• Cauchy-Schwartz is verified thanks to p.d. of the Gram matrix on all $\mathbf{x}_i, \mathbf{y}_j$.

$$\begin{bmatrix} \alpha^T & \mathbf{0}_n^T \\ \mathbf{0}_m^T & \beta^T \end{bmatrix} \begin{bmatrix} K_{\mathbf{x}} & K_{\mathbf{x},\mathbf{y}} \\ K_{\mathbf{x},\mathbf{y}}^T & K_{\mathbf{y}} \end{bmatrix} \begin{bmatrix} \alpha & \mathbf{0}_m \\ \mathbf{0}_n & \beta \end{bmatrix} = \begin{bmatrix} \alpha^T K_{\mathbf{x}} \alpha & \alpha^T K_{\mathbf{x},\mathbf{y}} \beta \\ \beta^T K_{\mathbf{x},\mathbf{y}}^T \alpha & \beta^T K_{\mathbf{y}} \beta \end{bmatrix} \succeq 0$$

hence

$$||f||^2 ||g||^2 = (\alpha^T K_{\mathbf{x}} \alpha) (\beta^T K_{\mathbf{y}}) \ge (\alpha^T K_{\mathbf{x},\mathbf{y}} \beta)^2 = \langle f, g \rangle^2.$$

 $\circ~\mbox{Hence}~\|f\|=0 \Rightarrow f=0$ since

$$\forall \mathbf{x} \in \mathcal{X}, |f(\mathbf{x})| = \langle f, k(\mathbf{x}, \cdot) \rangle \le ||f|| \sqrt{k(\mathbf{x}, \mathbf{x})} = 0.$$

 $\circ \ ilde{\mathcal{H}}$ is a pre-Hilbertian. For any Cauchy sequence f_n in $ilde{\mathcal{H}}$, and $\mathbf{x} \in \mathcal{X}$

$$|f_m(\mathbf{x}) - f_n(\mathbf{x})| = \langle f_n - f_m, k(\mathbf{x}, \cdot) \rangle \le ||f_n - f_m|| \sqrt{k(\mathbf{x}, \mathbf{x})} \to 0,$$

 $f_n(\mathbf{x})$ is thus Cauchy in \mathbb{R} and has thus a limit. f_n has thus a limit. \circ We add all such limits to **complete** $\tilde{\mathcal{H}}$ into \mathcal{H} .

 \circ still a few steps more (show the r.k. of \mathcal{H} is still k).

The kernel paradigm

• A simple function k that is p.d. defines a Hilbert space of functions:

 \circ its elements,

$$f(\mathbf{x}) = \sum_{i=1}^{\infty} \alpha_i k(\mathbf{x}_i, \mathbf{x}),$$

and Cauchy limits of such functions,

 \circ their dot-product,

$$\langle f, g \rangle_{\mathcal{H}} = \langle \sum_{i=1}^{\infty} \alpha_i k(\mathbf{x}_i, \cdot), \sum_{i=1}^{\infty} \beta_i k(\mathbf{y}_i, \cdot) \rangle_{\mathcal{H}} = \sum_{i,j=1}^{\infty} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{y}_j).$$

• their norm,

$$||f||^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{i,j=1}^{\infty} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j).$$

We usually focus on *positive definite* kernels but don't forget the **reproducing** story

Another alternative definition

Definition 3 (Reproducing Kernel). A real-valued function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel of a Hilbert space \mathcal{H} of real-valued functions on \mathcal{X} if and only if

(i) $\forall t \in \mathcal{X}, k(\cdot, t) \in \mathcal{H};$

(*ii*)
$$\forall t \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, t) \rangle = f(t).$$

• straightforward to prove equivalence with the first characterization.

A word on continuity

Proposition 2. Let k be a positive denite kernel on a **topological** space \mathcal{X} , and \mathcal{H} the associated RKHS. If $k(\mathbf{x}, \mathbf{y})$ is continuous for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, then all the functions in \mathcal{H} are **continuous** functions of $\mathcal{X} \mapsto \mathbb{R}$.

Proof. Let f be an arbitrary function in \mathcal{H} ,

$$|f(x) - f(y)| = |\langle f, k(\mathbf{x}, \cdot) - k(\mathbf{y}, \cdot) \rangle| \leq \frac{\|f\|}{CS} \|f\| \|k(\mathbf{x}, \cdot) - k(\mathbf{y}, \cdot)\|,$$

Remember that $||k(\mathbf{x}, \cdot) - k(\mathbf{y}, \cdot)|| = k(\mathbf{x}, \mathbf{x}) + k(\mathbf{y}, \mathbf{y}) - 2k(\mathbf{x}, \mathbf{y}).$

A more intuitive perspective: Feature maps

Theorem 3. A function k on $\mathcal{X} \times \mathcal{X}$ is a positive definite kernel if and only if there exists a set T and a mapping ϕ from \mathcal{X} to $l^2(T)$, the set of real sequences $\{u_t, t \in T\}$ such that $\sum_{t \in T} |u_t|^2 < \infty$, where

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{X}, \ k(\mathbf{x}, \mathbf{y}) = \sum_{t \in T} \phi(\mathbf{x})_t \ \phi(\mathbf{y})_t = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_{l^2(X)}$$

- A very popular perspective in the machine learning world.
- Equivalent to previous definitions, less stressed in the RHKS literature.

$$\mathbf{x} \longrightarrow \phi(\mathbf{x}) = \begin{bmatrix} \vdots \\ \vdots \\ \phi(\mathbf{x})_t \\ \vdots \\ \vdots \end{bmatrix}_{t \in T}$$

where the ϕ_t are a set of – possibly infinite but countable – features.

kernels \rightarrow Gram matrices

• If $X = {\mathbf{x}_i}_{i \in I}$ in \mathcal{X} ,

$$K_X = [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j \in I} \succeq 0.$$

• If one applies any transformation of K_X which keeps eigenvalues nonnegative,

$$\begin{array}{ccccc} r: & \mathbf{S}_n & \longmapsto & \mathbf{S}_n \\ & K & \longrightarrow & r(K), \end{array}$$

r(K) is a valid positive definite matrix and hence a kernel on X.

- examples: $K + t(t > 0), K^2, e^K, etc.$
- in fact, if $K = P\Delta P^T$, any transformation that preserves the spectrum's non-negativity would be ok.
- Yet... this kernel is only valid on X, the sample, not the whole space \mathcal{X} .

Meaning somehow... Gram matrices \rightarrow kernels

positive definite kernels and distances

- Kernels are often called similarities.
- the higher $k(\mathbf{x}, \mathbf{y})$, the more similar \mathbf{x} and \mathbf{y} .
- With distances, the lower $d(\mathbf{x}, \mathbf{y})$, the closer \mathbf{x} and \mathbf{y} .
- Many distances exist in the literature. Can they be used to define kernels?

what is the link between kernels and distances? high similarity $\stackrel{?}{=}$ small distance

- At least true for the Gaussian kernel $k(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x}-\mathbf{y}\|^2/2\sigma^2}...$
- Important theorems taken from [BCR84].

Distances

Definition 4 (Distances, or metrics). A nonnegative-valued function d on $\mathcal{X} \times \mathcal{X}$ is a distance if it satisfies, $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$:

(i) $d(\mathbf{x}, \mathbf{y}) \ge 0$, and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$ (non-degeneracy)

(ii) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symmetry),

(iii) $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (triangle inequality)

- Very simple example: if \mathcal{X} is a Hilbert space, $\|\mathbf{x} \mathbf{y}\|$ is a distance. It is usually called a... Hilbertian distance.
- By extension, any distance $d(\mathbf{x}, \mathbf{y})$ which can be written as $\|\phi(\mathbf{x}) \phi(\mathbf{y})\|$ where ϕ maps \mathcal{X} to any Hilbert space is called a **Hilbertian metric**.
- Useful. To build Gaussian kernel, Laplace kernels $k(\mathbf{x}, \mathbf{y}) = e^{-t ||\mathbf{x}-\mathbf{y}||} \dots$
- Yet does not suffice:

the missing link: negative definite kernels

Definition 5 (Negative Definite Kernels). A symmetric function $\psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a negative definite (n.d.) kernel on \mathcal{X} if

$$\sum_{i,j=1}^{n} c_i c_j \psi\left(x_i, x_j\right) \le 0 \tag{1}$$

holds for any $n \in \mathbb{N}, x_1, \ldots, x_n \in \mathcal{X}$ and $c_1 \ldots, c_n \in \mathbb{R}$ such that $\sum_{i=1}^n c_i = 0$.

• Example $\psi(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2$.

 \circ prove by decomposing into $\|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - 2\langle \mathbf{x}_i, \mathbf{x}_j \rangle$

• $\mathcal{N}(\mathcal{X})$ is also a closed convex cone.

important example: k is p.d. $\Rightarrow -k$ is n.d. Converse completely false.

negative definite kernels & positive definite kernels

A first link between these two kernels:

Proposition 4. Let $x_0 \in \mathcal{X}$ and let $\psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric kernel. Let

$$\varphi(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \psi(\mathbf{x}, x_0) + \psi(\mathbf{y}, x_0) - \psi(\mathbf{x}, \mathbf{y}) - \psi(x_0, x_0).$$

Then k is positive definite $\Leftrightarrow \psi$ is negative definite.

• Example: $\|\mathbf{x} - x_0\|^2 + \|\mathbf{y} - x_0\|^2 - \|\mathbf{x} - \mathbf{y}\|^2$ is a p.d. kernel.

Proof.

•
$$\Rightarrow$$
 For $\mathbf{x}_1, \cdots, \mathbf{x}_n$, and c_1, \cdots, c_n s.t. $\sum_{i=1}^n c_i = \mathbf{0}$,

$$\sum_{i,j=1}^{n} c_i c_j \varphi(\mathbf{x}_i, \mathbf{x}_j) = -\sum_{i,j=1}^{n} c_i c_j \psi(\mathbf{x}_i, \mathbf{x}_j) \ge 0.$$

•
$$\leftarrow$$
 For $\mathbf{x}_1, \cdots, \mathbf{x}_n$ and c_1, \cdots, c_n , let $c_0 = -\sum_{i=1}^n$. Set $\mathbf{x}_0 = x_0$. Then

$$0 \ge \sum_{i,j=0}^{n} c_{i}c_{j}\psi(\mathbf{x}_{i},\mathbf{x}_{j})$$

= $\sum_{i,j=1}^{n} c_{i}c_{j}\psi(\mathbf{x}_{i},\mathbf{x}_{j}) + \sum_{i=1}^{n} c_{i}c_{0}\psi(\mathbf{x}_{i},x_{0}) + \sum_{j=1}^{n} c_{0}c_{j}\psi(x_{0},\mathbf{x}_{j}) + c_{0}^{2}\psi(x_{0},x_{0}).$
= $\sum_{i,j=1}^{n} [\psi(\mathbf{x}_{i},x_{0}) + \psi(\mathbf{x}_{j},x_{0}) - \psi(\mathbf{x}_{i},\mathbf{y}_{j}) - \psi(x_{0},x_{0})] = \sum_{i,j=1}^{n} c_{i}c_{j}\varphi(\mathbf{x}_{i},\mathbf{x}_{j}).$

negative definite kernels & positive definite kernels

Proposition 5. For a p.d. kernel $k \ge 0$ on $\mathcal{X} \times \mathcal{X}$, the following conditions are equivalent

 $(i) - \log k \in \mathcal{N}(\mathcal{X}),$

(ii) k^t is positive definite for all t > 0.

If k satisfies either, k is said to be **infinitely divisible**,

Proof.

- $-\log k = \lim_{n \to \infty} n(1 k^{\frac{1}{n}})$ which is the limit of a series of n.d. kernels if (ii) is true, hence $(ii) \Rightarrow (i)$.
- conversely, if $-\log k \in \mathcal{N}(\mathcal{X})$ we use Proposition 4. Writing $\psi = -\log k$ and choosing $x_0 \in \mathcal{X}$ we have

$$k^{t} = e^{-t\psi(\mathbf{x},\mathbf{y})} = e^{t\psi(x_{0},x_{0})} e^{t\varphi(\mathbf{x},\mathbf{y})} e^{-t\psi(\mathbf{x},x_{0})} e^{-t\psi(\mathbf{y},x_{0})} \in \mathcal{P}(\mathcal{X})$$

negative definite kernels: (Hilbertian distance)² + ... Proposition 6. Let $\psi : \mathcal{X} \times \mathcal{X}$ be a n.d. kernel. Then there is a Hilbert space H and a mapping ϕ from X to H such that

$$\psi(\mathbf{x}, \mathbf{y}) = \|\phi(\mathbf{x}) - \phi(\mathbf{y})\|^2 + f(\mathbf{x}) + f(\mathbf{y}),$$
(2)

where $f : \mathcal{X} \to \mathbb{R}$. If $\psi(x, x) = 0$ for all $\mathbf{x} \in \mathcal{X}$ then f can be chosen as zero. If the set $\{(\mathbf{x}, \mathbf{y}) | \psi(\mathbf{x}, \mathbf{y}) = 0\}$ is exactly $\{(\mathbf{x}, \mathbf{x}), \mathbf{x} \in \mathcal{X}\}$ then $\sqrt{\psi}$ is a Hilbertian distance.

Proof. Fix x_0 and define

$$\varphi(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \frac{1}{2} \left[\psi(\mathbf{x}, x_0) + \psi(\mathbf{y}, x_0) - \psi(\mathbf{x}, \mathbf{y}) - \psi(x_0, x_0) \right].$$

By Proposition 4 φ is p.d. hence there is a RKHS and mapping ϕ such that $\varphi(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$. Hence

$$\begin{aligned} \|\phi(\mathbf{x}) - \phi(\mathbf{y})\|^2 &= \varphi(\mathbf{x}, \mathbf{x}) + \varphi(\mathbf{y}, \mathbf{y}) - 2\varphi(\mathbf{x}, \mathbf{y}) \\ &= \psi(\mathbf{x}, \mathbf{y}) - \frac{\psi(\mathbf{x}, \mathbf{x}) + \psi(\mathbf{y}, \mathbf{y})}{2}. \end{aligned}$$

EPAT'10 - M. Cuturi

distances & negative definite kernels

- whenever a n.d. kernel ψ
 - \circ vanishes on the *diagonal*, *i.e.* on $\{(x, x), x \in \mathcal{X}\}$,
 - \circ is 0 only on the diagonal, to ensure non-degeneracy,

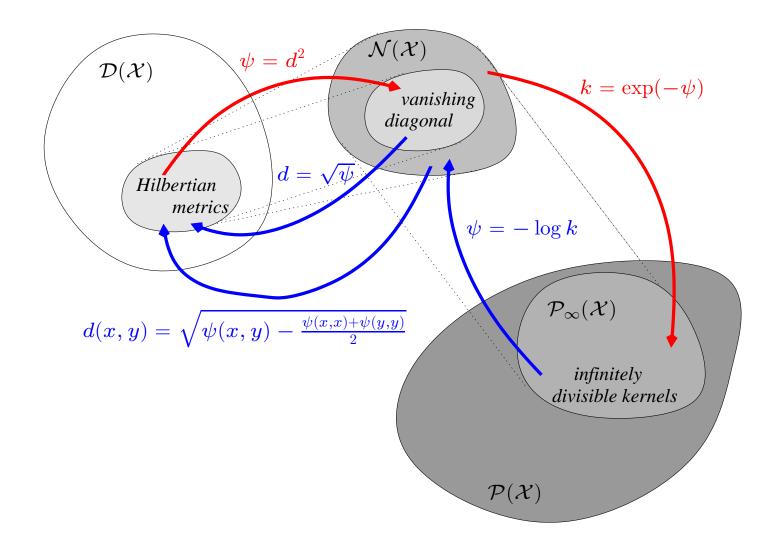
 $\rightarrow \sqrt{\psi}$ is a Hilbertian distance for \mathcal{X} .

• More generally, for a n.d. kernel ψ ,

$$\sqrt{\psi(\mathbf{x},\mathbf{y}) - \frac{\psi(\mathbf{x},\mathbf{x})}{2} - \frac{\psi(\mathbf{y},\mathbf{y})}{2}}$$
 is a (pseudo)**metric** for \mathcal{X} .

 On the contrary, to each distance does not always correspond a n.d. kernel (Monge-Kantorovich distance, edit-distance etc..)

In summary...



• Set of distances on \mathcal{X} is $\mathcal{D}(\mathcal{X})$, Negative definite kernels $\mathcal{N}(\mathcal{X})$, positive and infinitely divisible positive kernels $\mathcal{P}(\mathcal{X})$ and $\mathcal{P}_{\infty}(\mathcal{X})$ respectively.

Some final remarks on $\mathcal{N}(\mathcal{X})$ and $\mathcal{P}(\mathcal{X})$

- $\mathcal{N}(\mathcal{X})$ is a cone. Additionally,
 - o if ψ ∈ N(X), ∀c ∈ ℝ, ψ + c ∈ N(X).
 o if ψ(x, x) ≥ 0 for all x ∈ X, ψ^α ∈ N(X) for 0 < α < 1 since

$$\psi^{\alpha} = \frac{\alpha}{\Gamma(1-\alpha)} \int_0^\infty t^{-\alpha-1} (1-e^{-t\psi}) dt$$

and $\log(1+\psi) \in \mathcal{N}(\mathcal{X})$ since

$$\log(1+\psi) = \int_0^\infty (1-e^{-t\psi}) \frac{e^{-t}}{t} dt.$$

 $\circ~\mbox{if}~\psi>0,~\mbox{then}~\log(\psi)\in\mathcal{N}~\mbox{since}$

$$\log(\psi) = \lim_{c \to \infty} \log\left(\psi + \frac{1}{c}\right) = \lim_{c \to \infty} \log\left(1 + c\psi\right) - \log c$$

Some final remarks on $\mathcal{D}(\mathcal{X}), \mathcal{N}(\mathcal{X}), \mathcal{P}(\mathcal{X})$

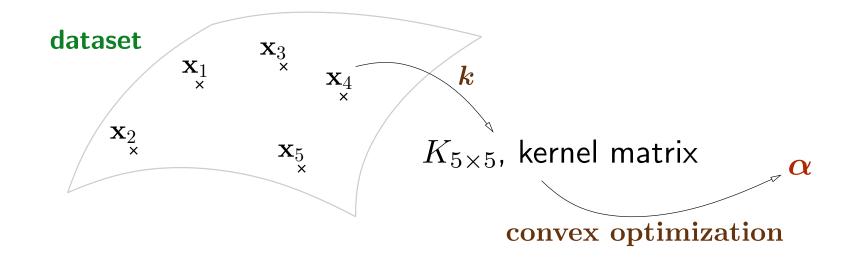
• $\mathcal{P}(\mathcal{X})$ is a cone. Additionally,

- \circ The pointwise product k_1k_2 of two p.d. kernels if a p.d. kernel
- $k^n \in \mathcal{P}(\mathcal{X})$ for $n \in \mathbb{N}$. $(k+c)^n$ too...as well as $\exp(k) \in \mathcal{P}(\mathcal{X})$:
 - $\triangleright \exp(k) = \sum_{i=0}^{\infty} \frac{k^i}{i!}$, a limit of p.d. kernels.
 - $\triangleright \exp(k) = \exp(-(-k))$ where $-k \in \mathcal{N}(\mathcal{X})$.
- The sum of two infinitely divisible kernels is not necessarily infinitely divisible.
 - $\circ -\log k_1$ and $-\log k_2$ might be in $\mathcal{N}(\mathcal{X})$, but $-\log(k_1+k_2)$?...

Defining kernels

Intuitively an important issue...

Remember that kernel methods drop all previous information



to proceed exclusively with K.

if the kernel K is poorly informative, the optimization cannot be very useful... it is therefore **crucial** that the kernel quantifies **noteworthy similarities**.

Kernels on vectors

(relatively) easy case: we are only given feature vectors, with **no** access to the original data.

- Reminder (copy paste of previous slide!): for a family of kernels k_1, \dots, k_n, \dots
 - The sum $\sum_{i=1}^{n} \lambda_i k_i$ is p.d., given $\lambda_1, \ldots, \lambda_n \geq 0$ • The product $k_1^{a_1} \cdots k_n^{a_n}$ is p.d., given $a_1, \ldots, a_n \in \mathbb{N}$ • $\lim_{n\to\infty} k_n$ is p.d. (if the limit exists!).
- Using these properties we can prove the p.d. of
 - o the polynomial kernel k_p(x, y) = (⟨**x**, **y**⟩ + b)^d, b > 0, d ∈ ℕ,
 o the Gaussian kernel k_σ(x, y) = e<sup>-\frac{||**x**-**y**||²}{2σ²} which can be rewritten as
 </sup>

$$k_{\sigma}(x,y) = \left[e^{-\frac{\|\mathbf{x}\|^2}{2\sigma^2}}e^{-\frac{\|\mathbf{y}\|^2}{2\sigma^2}}\right] \cdot \left[\sum_{i=0}^{\infty} \frac{\langle \mathbf{x}, \mathbf{y} \rangle^i}{i!}\right]$$

Kernels on vectors

• the Laplace kernels, using some n.d. kernel weaponry,

$$k_{\lambda}(x,y) = e^{-\lambda \|\mathbf{x} - \mathbf{y}\|^{\boldsymbol{a}}}, \quad 0 < \lambda, \ 0 < \boldsymbol{a} \le 2$$

 \circ the all-subset Gaussian kernel in \mathbb{R}^d ,

$$k(x,y) = \prod_{i=1}^{d} \left(1 + ae^{-b(x_i - y_i)^2} \right) = \sum_{I \subset \{1, \cdots, d\}} a^{\#(I)} e^{-b\|\mathbf{x}_I - \mathbf{y}_I\|^2}.$$

• A variation on the Gaussian kernel: Mahalanobis kernel,

$$k_{\Sigma}(x,y) = e^{-(\mathbf{x}-\mathbf{y})^T \Sigma^{-1}(\mathbf{x}-\mathbf{y})},$$

idea: correct for discrepancies between the magnitudes and correlations of different variables.

 \circ Usually Σ is the empirical covariance matrix of a sample of points.

Kernels on vectors

- These kernels can be seen as *meta*-kernels which can use any feature representation.
- Example: Gaussian kernel of Gaussian kernel feature maps,

$$k_{G^2}(\mathbf{x}, \mathbf{y}) = k_G \left(e^{-\frac{\|\mathbf{x}-\cdot\|^2}{2\sigma^2}}, e^{-\frac{\|\mathbf{y}-\cdot\|^2}{2\sigma^2}} \right) = e^{-\frac{2-e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}}}{2\lambda^2}}$$

- Not sure this is very useful though!
- Indeed, the real challenge is not to define funky kernels,

the challenge is to tune the parameters b, d, σ, Σ .

Kernels on structured objects

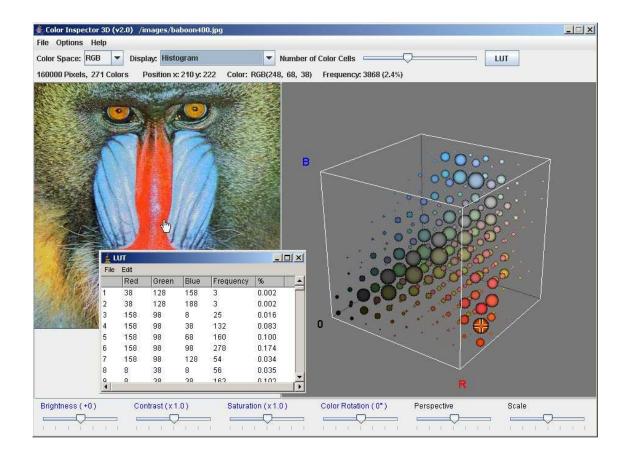
• Structured objects?

- texts, webpages, documents
- sounds, speech, music,
- images, video segments, movies,
- \circ 3d structures, sequences, trees, graphs
- Structured objects means
 - objects with a tricky structure,
 - which cannot be simply embedded in a vector space of small dimensionality,
 - without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space

Vectors in \mathbb{R}^n_+ and Histograms

• A powerful and popular feature representation for structured objects: histograms of smaller building-blocks of the object:



- histograms are simple instances of probability measures,
 - \circ nonnegative coordinates, sum up to 1.

Standard metrics for Histograms

Information geometry, introduced yesterday, studies distances between densities.

- Reference : [AN01]
- An abridged bestiary of **negative definite distances** on the probability simplex:

$$\psi_{JD}(\theta, \theta') = h\left(\frac{\theta + \theta'}{2}\right) - \frac{h(\theta) + h(\theta')}{2},$$

$$\psi_{\chi^2}(\theta, \theta') = \sum_i \frac{(\theta_i - \theta'_i)^2}{\theta_i + \theta'_i}, \quad \psi_{TV}(\theta, \theta') = \sum_i |\theta_i - \theta'_i|,$$

$$\psi_{H_2}(\theta, \theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta'_i}|^2, \quad \psi_{H_1}(\theta, \theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta'_i}|.$$

• Recover kernels through

$$k(\theta, \theta') = e^{-t\psi}, \quad t > 0$$

Information Diffusion Kernel [LL05,ZLC05]

- Solve the heat equation on the multinomial manifold, using the Fisher metric
- Approximate the solution with

$$k_{\Sigma_d}(\theta, \theta') = e^{-\frac{1}{t}\arccos^2(\sqrt{\theta} \cdot \sqrt{\theta'})},$$

- \arccos^2 is the squared geodesic distance between θ and θ' as elements from the unit sphere $(\theta_i \rightarrow \sqrt{\theta_i})$.
- In [ZLC05]: the use of

$$k_{\Sigma_d}(\theta, \theta') = e^{-\frac{1}{t}\arccos(\sqrt{\theta} \cdot \sqrt{\theta'})},$$

is advocated.

• the geodesic distance is a n.d. kernel on the whole sphere (\arccos^2 is not).

Transportation Metrics for Histograms

Beyond information geometry, the family of transportation distances.

- Suppose $\mathbf{r} = (r_1, \cdots, r_d)$ and $\mathbf{c} = (c_1, \cdots, c_d)$ are two histograms in \mathbb{R}^n_+ .
- Define the set of transportations

$$U(\mathbf{r}, \mathbf{c}) = \{ F \in \mathbb{R}^{d \times d} | F\mathbf{1} = \mathbf{r}, F^T\mathbf{1} = \mathbf{c} \}.$$

• Transportation distances between ${\bf r}$ and ${\bf c}:$

$$d_{\mathsf{cost}}(\mathbf{rc}) = \min_{F \in U(\mathbf{r}, \mathbf{c})} \mathsf{cost}(F).$$

Monge-Kantorovich: $cost(F) = \langle F, D \rangle$ where D is a n.d. matrix.

- d_{cost} is **not** n.d. in the general case.
- Alternatives:

$$k_{\text{cost}}(\mathbf{rc}) = \int_{F \in U(\mathbf{r},\mathbf{c})} e^{-\operatorname{cost}(F)}.$$

• works when cost = 0: the volume of $U(\mathbf{r}, \mathbf{c})$ is a p.d. kernel of \mathbf{r} and \mathbf{c} . [Cut07]

Statistical Modeling and Kernels

Histograms cannot always summarize efficiently the structures of ${\mathcal X}$

- Statistical models of complex objects provide richer explanations:
 - Hidden Markov Models for sequences and time-series,
 - VAR, VARMA, ARIMA etc. models for time-series,
 - $\circ~$ Branching processes for trees and graphs
 - Random Markov Fields for images *etc.*
- $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ are interpreted as i.i.d realizations of one or many densities on \mathcal{X} .
- These densities belong to a model $\{p_{ heta}, heta \in \Theta \subset \mathbb{R}^d\}$

Can we use **generative** (statistical) **models** in **discriminative** (kernel and metric based) **methods**?

Fisher Kernel

• The Fisher kernel [JH99] between two elements \mathbf{x}, \mathbf{y} of $\mathcal X$ is

$$k_{\hat{\theta}}(\mathbf{x}, \mathbf{y}) = \left(\frac{\partial \ln \boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \theta}\Big|_{\hat{\boldsymbol{\theta}}}\right)^{T} \boldsymbol{J}_{\hat{\boldsymbol{\theta}}}^{-1} \left(\frac{\partial \ln \boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{y})}{\partial \theta}\Big|_{\hat{\boldsymbol{\theta}}}\right),$$

• $\hat{\theta}$ has been selected using sample data (*e.g.* MLE), • $J_{\hat{\theta}}^{-1}$ is the Fisher information matrix computed in $\hat{\theta}$.

- The statistical model $\{p_{ heta}, heta \in \Theta\}$ provides:
 - finite dimensional *features* through the score vectors,
 - A Mahalanobis metric associated with these vectors through $J_{\hat{\theta}}$.
- Alternative formulation:

$$k_{\hat{\theta}}(x,y) = e^{-\frac{1}{\sigma^2} \left(\nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{x}) - \nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{y}) \right)^T J_{\hat{\theta}}^{-1} \left(\nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{x}) - \nabla_{\hat{\theta}} \ln p_{\theta}(\mathbf{y}) \right)}$$

with the meta-kernel idea.

Fisher Kernel Extended [TKR+02,SG02]

- Minor extensions, useful for binary classification:
- Estimate $\hat{\theta}_1$ and $\hat{\theta}_2$ for each class respectively,
- consider the score vector of the likelihood ratio

$$\phi_{\hat{\theta}_1,\hat{\theta}_2} : \mathbf{x} \mapsto \left(\frac{\partial \ln \frac{p_{\theta_1}(\mathbf{x})}{p_{\theta_2}(\mathbf{x})}}{\partial \vartheta} \Big|_{\hat{\vartheta} = (\hat{\theta}_1,\hat{\theta}_2)} \right),$$

where $\vartheta = (\theta_1, \theta_2)$ is in Θ^2 .

• Use this logratio's score vector to propose instead the kernel

$$(x,y) \mapsto \phi_{\hat{\theta}_1,\hat{\theta}_2}(\mathbf{x})^T \phi_{\hat{\theta}_1,\hat{\theta}_2}(\mathbf{y}).$$

Mutual Information Kernel: densities as feature extractors

- More **bayesian** flavor \rightarrow drops maximum-likelihood estimation of θ . [See02]
- Instead, use prior knowledge on $\{p_{\theta}, \theta \in \Theta\}$ through a density ω on Θ
- Mutual information kernel k_{ω} :

$$k_{\omega}(\mathbf{x}, \mathbf{y}) = \int_{\Theta} p_{\theta}(\mathbf{x}) p_{\theta}(\mathbf{y}) \, \omega(d\theta).$$

• The feature maps $0 \le p_{\theta}(\mathbf{x}) \le 1$ and $0 \le p_{\theta}(\mathbf{y}) \le 1$.

 k_{ω} is big whenever many **common** densities p_{θ} score high probabilities for **both** x and y

- Explicit computations sometimes possible, **namely conjugate priors**.
- Example: context-tree kernel for strings.

Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximum *a posteriori* approximation of the MI kernel.

• What? How? by setting the prior ω to the multivariate Gaussian density

$$\mathcal{N}(\hat{\theta}, J_{\hat{\theta}}^{-1}),$$

an approximation known as Laplace's method,

• Writing

$$\Phi(x) = \nabla_{\hat{\theta}} \ln p_{\theta}(x) = \frac{\partial \ln p_{\theta}(x)}{\partial \theta} \Big|_{\hat{\theta}}$$

we get

$$\log p_{\theta}(x) \approx \log p_{\hat{\theta}}(x) + \Phi(x)(\theta - \hat{\theta}).$$

Mutual Information Kernel & Fisher Kernels

• Using $\mathcal{N}(\hat{\theta}, J_{\hat{\theta}}^{-1})$ for ω yields

$$k(x,y) = \int_{\Theta} p_{\theta}(\mathbf{x}) p_{\theta}(\mathbf{y}) \,\omega(d\theta),$$

$$\approx C \int_{\Theta} e^{\log p_{\hat{\theta}}(x) + \Phi(x)^{T}(\theta - \hat{\theta})} e^{\log p_{\hat{\theta}}(y) + \Phi(y)^{T}(\theta - \hat{\theta})} e^{-(\theta - \hat{\theta})^{T}J_{\hat{\theta}}(\theta - \hat{\theta})} d\theta$$

$$= C p_{\hat{\theta}}(x) p_{\hat{\theta}}(y) \int_{\Theta} e^{(\Phi(x) + \Phi(y))^{T}(\theta - \hat{\theta}) + (\theta - \hat{\theta})^{T}J_{\hat{\theta}}(\theta - \hat{\theta})} d\theta$$

$$= C' p_{\hat{\theta}}(x) p_{\hat{\theta}}(y) e^{\frac{1}{2}(\Phi(x) + \Phi(y))^{T}J_{\hat{\theta}}^{-1}(\Phi(x) + \Phi(y))}$$
(1)

• the kernel

$$\tilde{k}(x,y) = \frac{k(x,y)}{\sqrt{k(x,x)k(y,y)}}$$

is equal to the Fisher kernel in exponential form.

Marginalized kernels - Graphs and Sequences

- Similar ideas: leverage latent variable models. [TKA02,KTI03]
- For location or time-based data,
 - \circ the probability of emission of a token x_i is conditioned by
 - an **unobserved** latent variable $s_i \in S$, where S is a finite space of possible states.
- for observed sequences $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n)$, sum over all possible state sequences the weighted product of these probabilities:

$$k(x,y) = \sum_{s \in S} \sum_{s' \in S} p(s|x) p(s'|y) \kappa ((x,s), (y,s'))$$

• closed form computations exist for graphs & sequences.

Kernels on MLE parameters

• Use model directly to extract a single representation from observed points:

$$x \mapsto \hat{\theta}_x, \quad y \mapsto \hat{\theta}_y,$$

through MLE for instance.

• compare x and y through a kernel k_{Θ} on Θ ,

$$k(x,y) = k_{\Theta}(\hat{\theta}_{\mathbf{x}}, \hat{\theta}_{\mathbf{y}}).$$

• Bhattacharrya affinities:

$$k_{\beta}(\mathbf{x}, \mathbf{y}) = \int_{\mathcal{X}} p_{\hat{\theta}_{\mathbf{x}}}(z)^{\beta} p_{\hat{\theta}_{\mathbf{y}}}(z)^{\beta} dz$$

for $\beta > 0$.

Semigroup Kernels : Building blocks

Loose algebraic structure: **Semigroups** [BCR84]

- Importance: unifying theory for many kernels, constructive perspective.
- a semigroup (S, +) is a set S ≠ Ø endowed with an associative composition + with neutral element 0.
- An involutive semigroup (S, +, *) is endowed with an involution $* : S \to S$ such that $\forall x$ in $S, (x^*)^* = x$.
- Examples:
 - S is the set of strings, + is the concatenation, 0 is the empty string. * is either the identity or the operation $ABCD \rightarrow DCBA$.
 - $\circ~\mathcal{S}$ is a group, and * is the inverse. $\mathit{e.g.}~(\mathbb{R}^d,+,-)$
 - $\circ \ \mathcal{S} \text{ is } \mathbb{R}^d_+$ with the + operation and * is the identity.
- We only consider **abelian** (+ is commutative) semigroups.

Semigroup Kernels

• a **semigroup kernel** is a kernel k defined as

$$k(x,y) \stackrel{\text{def}}{=} \varphi(x+y^*),$$

where $\varphi : \mathcal{S} \mapsto \mathbb{R}$.

- \rightarrow quantify similarity by looking only at $x + y^*$.
- Examples in \mathbb{R}^d ,

$$k(x,y) = \varphi(x-y), \quad *(x) = -x,$$

or

$$k(x,y) = \phi(x+y), \quad *(x) = x$$

• Example in $M_1(\mathbb{R}^d)$, the space of probability measures on \mathbb{R}^d ,

$$k(\mu, \mu') \stackrel{\text{def}}{=} \frac{1}{\sqrt{\det \Sigma\left(\frac{\mu+\mu'}{2}\right)}},$$

Semigroup Kernels and Semicharacters

- Semicharacters: real-valued function ρ on an Abelian semigroup (S, +) s.t.
- (i) $\rho(0) = 1$, (ii) $\forall s, t \in S, \ \rho(s + t) = \rho(s)\overline{\rho(t)}$, (iii) $\forall s \in S, \ \rho(s) = \overline{\rho(s^*)}$.
- For (ℝ⁺, +, ld), semicharacters are exactly functions s → e^{λs}. indeed,
 e^{λ(s+t)} = e^{λs}e^{λt}
- For (ℝ, +, −), semicharacters are exactly functions s → e^{iλs}. indeed,
 e^{iλ(s−t)} = e^{iλs}e^{-iλt}, e^{iλs} = e^{-iλs}.
- \hat{S} is the set of bounded semicharacters.

The building blocks of (bounded) semigroup kernels are semicharacters.

Semigroup Kernels and Semicharacters

• Proved in a fundamental theorem of Bochner [Boc33], generalized by [BCR84]:

Theorem 7 (Integral representation of p.d. functions). A bounded function $\varphi: S \to \mathbb{R}$ is p.d. if and only if it there exists a non-negative measure ω on \hat{S} such that:

$$\varphi(s) = \int_{\hat{S}} \rho(s) \ d\omega(\rho).$$

In that case the measure ω is unique.

• Proof idea

- Semicharacters are extreme rays of the cone of positive definite kernels.
- Choquet's theory helps us prove that any point in that cone is a convex combination of extreme rays (a barycentre)

Bochner Theorems in $(\mathbb{R}^d, +, -)$ and $(\mathbb{R}^d_+, +, \mathsf{Id})$

• * = -: \exists ! non-negative measure ω on \mathbb{R}^d s.t.

$$\varphi(x) = \int_{\mathbb{R}^d} e^{ix^T r} d\omega(r);$$

 φ is the Fourier transform of a non-negative measure ω on \mathbb{R}^d .

- Kernels of the type $k(x, y) = \varphi(x y)$ also known as **Radial Basis Functions** have such a decomposition.
- * =Id: Suppose k is bounded & s.t. $k(x, y) = \psi(x + y)$. \exists ! non-negative measure ω on \mathbb{R}^d s.t.

$$\psi(x) = \int_{\mathbb{R}^d} e^{-x^T r} d\omega(r);$$

 ψ is the Laplace transform of a non-negative measure ω on \mathbb{R}^d .