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Kernel Methods

A reasonably large academic subfield

• Widespread popularity in machine learning now

• Gained momentum in the late 90’s with the support vector machine,

• Rooted in much older maths.

• Kernel methods are a pluridisciplinary field, publications appearing in

◦ computer science (nips, journ. of machine learning, ICML..),
◦ statistics and functional analysis (annals of statistics..),
◦ optimization (Mathematical Programming..),
◦ Different application subfields (Neural Computation..)
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Kernel Methods

• Standard text-books:

◦ Introduction [SS02]

◦ More about kernels [STC04]

◦ More learning theory [SC08]

◦ First chapters [STV04]
◦ “Mathematical” perspective [BTA03]. The real deal: [BCR84].

• Some short surveys,

◦ journal papers [HHS08], [MMR+01]
◦ a survey on my webpage (local copy, not arxiv): key to all citations!

• On the web:

◦ Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, Stéphane Canu.
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Some terminology

Etymology : from old english cyrnel, diminutive of corn (seed)

the word kernel appears in different different contexts...

• The linux kernel...

• Kernel of a linear operator of X : ker(L) = {x ∈ X |L(x) = 0}.
• Kernel of a matrix in R

d×d, i.e. its nullspace {x ∈ R
d|Ax = 0}.

• In set theory, for a function f : X 7→ Y, ker(f) = {(x, x′)| f(x) = f(x′)}.

• Kernel of an integral transform T , Tf(u) =
∫ t2
t1
k(t, u)f(t)dt

• Smoothing kernel, a function k ≥ 0, k(u) = k(−u),
∫ ∞
−∞ k(u)du = 1.

• K(t, x, y) = 1
(4πt)d/2

e−
‖x−y‖2

4t solves heat equation K(t, x, y) = ∆xK(t, x, y)

sets, subspaces, one-variable, two-variables, three-variables function...
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Moral of the story

No need to look for a common or primitive meaning

• Kernel is just a word mathematicians fancy (unfortunately!)

• People enjoy it because of its vague “core” meaning.

• Don’t feel you have missed something if you do not see the connection
between different kernel objects in mathematics. There might be none...

• Will mention some links during the lecture between different definitions.
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What is a kernel

In the context of these lectures...

• A kernel k is a function

k : X × X 7−→ R

(x,y) −→ k(x,y)

• which compares two objects of a space X , e.g....

◦ strings, texts and sequences,

◦ images, audio and video feeds,

◦ graphs, interaction networks and 3D structures

• whatever actually... time-series of graphs of images? graphs of texts?...
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Fundamental properties of a kernel

symmetric

k(x,y) = k(y,x).

positive-(semi)definite
for any finite family of points x1, · · · ,xn of X , the matrix

K =

















k(x1,x1) k(x1,x2) · · · k(x1,xi) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xi) · · · k(x2,xn)

... ... . . . ... ... ...
k(xi,x1) k(xi,x2) · · · k(xi,xi) · · · k(x2,xn)

... ... ... ... . . . ...
k(xn,x1) k(xn,x2) · · · k(xn,xi) · · · k(xn,xn)

















� 0

is positive semidefinite (has a nonnegative spectrum).

K is often called the Gram matrix of {x1, · · · ,xn} using k
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What can we do with a kernel?
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The setting

• Pretty simple setting: a set of objects x1, · · · ,xn of X
• Sometimes additional information on these objects

◦ labels yi ∈ {−1, 1} or {1, · · · ,#(classes)},
◦ scalar values yi ∈ R,
◦ associated object yi ∈ Y

• A kernel k : X × X 7→ R.
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

• The functional perspective: represent points as functions.

• The new or alternative dot-product perspective.

• Nonlinearity : linear combination of kernel evaluations.

• Summary of a sample through its kernel matrix.
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Represent any point in X as a function

For every x, the map
x −→ k(x, ·)

associates to x a function k(x, ·) from X to R.

• Suppose we have a kernel k on bird images

• Suppose for instance

k ( , ) = .32
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Represent any point in X as a function

• We examine one image in particular:

• With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R

2 for simplicity.

schematic plot of k ( , · ) .
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Represent any point in X as a function

• If the bird example was confusing...

• k
(

[ xy ] ,
[

x′
y′

])

=
(

[ x y ]
[

x′
y′

]

+ .3
)2

• From a point in R
2 to a function defined over R

2.
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• We assume implicitly that the functional representation will be more useful
than the original representation.
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Dot-product perspective

• Suppose X = R
d.

• The simplest kernel: k(x,y) = xTy.

• For a data sample X = {x1,x2, · · · ,xn}.

• In matrix form, X =





... ... · · · ...
x1 x2 · · · xn
... ... · · · ...



 ∈ R
d×n.

• In standard linear algebra, the Gram matrix of X is

K =
[

xTi xj
]

1≤i,j≤n = XTX.

EPAT’10 - M. Cuturi 14



Dot-product perspective

• Consider a different kernel kG(x,y) = exp
(

−‖x−y‖2

σ2

)

,

KG =
[

kG(xi,xj)
]

1≤i,j≤n .

• obviously xTi xj 6= kG(xi,yj).

• is there a representation ξi ∈ R
?? for each point such that ξTi ξj = kG(xi,xj)?

• Linear algebra to the rescue: K = PDP T , U = P
√
DP T , hence K = UTU ,

providing U =





... ... · · · ...
ξ1 ξ2 · · · ξn
... ... · · · ...



 ∈ R
n×n.
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Dot-product perspective

• In summary, we have defined n vectors such that

[

kG(xi,xj)
]

=
[

ξTi ξj
]

• Great: for each xi we have a vector representation ξi.

• Problem:

◦ this representation depends explicitly on the sample X .
◦ For a new xn+1, difficult to find ξn+1 such that ξTn+1ξj = kG(xn+1,xj).

• We will see that there exists a mapping φ, such that

◦ φ : X → H where H is a dot-product space,
◦ which gives a dot product representation for k,

kG(x,y) = 〈φ(x), φ(y) 〉.

for all points (x,y)...
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Decision functions as linear combination of kernel evaluations

• Linear decisions functions are a major tool in statistics, that is functions

f(x) = βTx + β0.

• Implicitly, a point x is processed depending on its characteristics xi,

f(x) =
d

∑

i=1

βixi + β0.

the free parameters are scalars β0, β1, · · · , βd.

• Kernel methods yield candidate decision functions

f(x) =
n

∑

j=1

αjk(xj,x) + α0.

the free parameters are scalars α0, α1, · · · , αn.
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Decision functions as linear combination of kernel

evaluations

• linear decision surface / linear expansion of kernel surfaces (here kG(xi, ·))
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• Kernel methods are considered non-linear tools.

• Yet not completely “nonlinear” → only one-layer of nonlinearity.

kernel methods use the data as a functional base to define decision functions

EPAT’10 - M. Cuturi 18



Decision functions as linear combination of kernel evaluations

with a kernel machine

f(x) =
∑N

i=1 αi k (xi,x)

kernel definition

weights α estimated

database {xi, i = 1, . . . , N}

• f is any predictive function of interest of a new point x.

• Weights α are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

• Imagine a little task: you have read 100 novels so far.

• You would like to know whether you will enjoy reading a new novel.

• A few options:

◦ read the book...
◦ have friends read it for you, read reviews.
◦ try to guess, based on the novels you read, if you will like it
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The Gram matrix perspective

Two distinct approaches

• Define what features can characterize a book.

◦ Map each book in the library onto vectors

−→ x =









x1

x2
...
xd









typically the xi’s can describe...
⊲ # pages, language, year 1st published, country,
⊲ coordinates of the main action, keyword counts,
⊲ author’s prizes, popularity, booksellers ranking

• Challenge: find a decision function using 100 ratings and features.
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The Gram matrix perspective

• Define what makes two novels similar,

◦ Define a kernel k which quantifies novel similarities.
◦ Map the library onto a Gram matrix

−→ K =









k(b1, b1) k(b1, b2) · · · k(b1, b100)
k(b2, b1) k(b2, b2) · · · k(b2, b100)

... ... . . . ...
k(bn, b1) k(bn, b2) · · · k(b100, b100)









• Challenge: find a decision function that takes this 100×100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

• with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have I found in the past that were
good indicators of my taste?

• with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did I find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.
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The Gram matrix perspective

In summary

• A feature based analysis of a data-driven problem:

objects o1, · · · , on −→ feature vectors X =





... ... · · · ...
x1 x2 · · · xn
... ... · · · ...



 ∈ R
d×n

• A similarity based analysis of a data driven problem:

objects o1, · · · , on → Gram K =









k(o1, o1) k(o1, o2) · · · k(o1, on)
k(o2, o1) k(o2, o2) · · · k(o2, on)

... ... . . . ...
k(on, o1) k(on, o2) · · · k(on, on)









∈ R
n×n

• Some parallels (can define K = XTX or X =
√
K or Cholesky) but...

Algorithms use either features or (kernel) similarities.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset x3

x4

x5
x2

x1

convex optimization

K5×5, kernel matrix

k

α

and Convex optimization (thanks to psdness of K, more later) to output the α’s.
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Outline of the lectures
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Outline

• Mathematical considerations (≤ 80′s)

◦ Reproducing Kernel Hilbert Spaces
◦ positive-definiteness, negative definiteness etc..
◦ kernels, similarities and distances

• Defining kernels

◦ Standard kernels (≤ 80′s)
◦ Statistical modeling & kernels (> 1998)
◦ Algebraic structures and kernels

• Kernel algorithms

◦ representer theorem
◦ unsupervised techniques, eigenfunctions of samples (≥ 1998)
◦ supervised learning, SVM (≥ 1995)
◦ density estimation and novelty detection (≥ 1999)

• Selecting kernels

◦ parameter tuning (≥ 00′s)
◦ multiple kernel learning (≥ 2004)
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Mathematical Considerations

different definitions and properties of the same mathematical object
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space of functions

• In the next slides we focus on

reproducing kernel Hilbert spaces (RKHS)

• This term is ubiquitous in the kernel methods literature.

• “Old” mathematics [Mer09], [Aro50]. Survey in [BTA03].

• Reminder: a Hilbert space is a

◦ vector space, possibly infinite dimensional,
◦ equipped with a dot-product, i.e.

⊲ a bilinear symmetric application
⊲ which satisfies 〈x, x〉 ≥ 0, equal to 0 only with x = 0.

◦ complete (all Cauchy sequences converge inside the space).

• reproducing kernel... a new term.

EPAT’10 - M. Cuturi 29



reproducing kernels

• Let H be a Hilbert space of real-valued functions on X .

Definition 1 (RKHS). H is said to be a reproducing kernel Hilbert space if
every linear map of the form Lx : f 7→ f(x) from H to R is continuous for
any x in X .

Where is the reproducing kernel in this definition?
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reproducing kernels

• By the Riesz representation theorem

◦ Any continuous linear functional L(·) on H can be written uniquely 〈u, ·〉H
we hence have that:

∀x ∈ X , ∃ ! kx ∈ H | f(x) = 〈f, kx〉H, ∀f ∈ H

kx is called the point-evaluation functional at the point x.

• Since H is a space of functions, kx is itself a function. k : X × X → R is
defined by

k(x,y)
def
= kx(y).

• k is the reproducing kernel of H and it is determined entirely by H through
the Riesz representation theorem which guarantees the unicity of kx for each x.
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positive definite kernels

Definition 2 (Real-valued Positive Definite Kernels). A symmetric function
k : X × X → R is a positive definite (p.d.) kernel on X if

n
∑

i,j=1

cicj k (xi, xj) ≥ 0,

holds for any n ∈ N, x1, . . . , xn ∈ X and c1 . . . , cn ∈ R.

With this definition, the set of p.d. kernels P(X ) is a closed, convex pointed cone:

• ∀λ ≥ 0, k p.d.kernel ⇒ λk is p.d.

• ∀λ ≥ 0, k1, k2 p.d.kernel, λk1 + (1 − λ)k2 p.d. kernel.

• k p.d. kernel, −k p.d. kernel ⇒ k = 0.

• if kn ∈ P(X ) and limn∞ kn = k then k ∈ P(X ).
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kernels: two definitions

• Have mathematicians screwed up again and used the term kernel separately?

reproducing kernels (functional analysis, topology)
?

6=
positive definite kernels (positivity and linear algebra)

• luckily, no screw up: the two notions are equivalent.
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Moore-Aronszajn (1950) theorem

Theorem 1. Let X be any set. An application X × X 7→ R is a reproducing
kernel iff it is a positive definite kernel

• A first proof was given by Mercer (1909) when X is compact.

• Hence the Mercer kernel term sometimes used.

• In many applications compacity is never really mentioned...

• ... hence positive definite or reproducing are more accurate terms.

• In the general case the result was proved by Moore & Aronszajn in 1950
(separately).
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Moore-Aronszajn (1950) theorem, proof outline

• If k is a r.k., k(x,y) = 〈k(x, ·), k(y, ·) 〉 = 〈k(y, ·), k(x, ·) 〉 = k(y,x),

n
∑

i,j=1

cicjk(xi,xj) =

∥

∥

∥

∥

∥

n
∑

i=1

k(xi, ·)
∥

∥

∥

∥

∥

2

H
≥ 0.

• if k is a p.d. kernel,

◦ Define the vector space H̃ = span{k(x, ·)}.
◦ Define 〈·, · 〉H̃ for f =

∑m
i=1αik(xi, ·) and g =

∑n
j=1 βjk(yj, ·) as

〈f, g 〉 =

m,n
∑

i,j=1

αiβjk(xi,yj).

◦ even if {k(x, ·)}x∈X is not a l.i. family (i.e. no unicity of α or β) we have

〈f, g 〉 =

m
∑

i=1

αig(xi) =

n
∑

j=1

βif(yi).
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◦ 〈·, · 〉H̃ is bilinear symmetric and p.d. through the p.d. of k.
◦ Cauchy-Schwartz is verified thanks to p.d. of the Gram matrix on all xi,yj.

[

αT 0Tn
0Tm βT

] [

Kx Kx,y

KT
x,y Ky

] [

α 0m
0n β

]

=

[

αTKxα αTKx,yβ

βTKT
x,yα βTKyβ

]

� 0

hence

‖f‖2‖g‖2 = (αTKxα)(βTKy) ≥ (αTKx,yβ)2 = 〈f, g 〉2.

◦ Hence ‖f‖ = 0 ⇒ f = 0 since

∀x ∈ X , |f(x)| = 〈f, k(x, ·) 〉 ≤ ‖f‖
√

k(x,x) = 0.

◦ H̃ is a pre-Hilbertian. For any Cauchy sequence fn in H̃, and x ∈ X

|fm(x) − fn(x)| = 〈fn − fm, k(x, ·) 〉 ≤ ‖fn − fm‖
√

k(x,x) → 0,

fn(x) is thus Cauchy in R and has thus a limit. fn has thus a limit.
◦ We add all such limits to complete H̃ into H.
◦ still a few steps more (show the r.k. of H is still k).
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The kernel paradigm

• A simple function k that is p.d. defines a Hilbert space of functions:

◦ its elements,

f(x) =
∞
∑

i=1

αik(xi,x),

and Cauchy limits of such functions,
◦ their dot-product,

〈f, g〉H = 〈
∞
∑

i=1

αik(xi, ·),
∞
∑

i=1

βik(yi, ·)〉H =
∞
∑

i,j=1

αiβjk(xi,yj).

◦ their norm,

‖f‖2 = 〈f, f〉H =
∞
∑

i,j=1

αiαjk(xi,xj).

We usually focus on positive definite kernels but don’t forget the reproducing story
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Another alternative definition

Definition 3 (Reproducing Kernel). A real-valued function k : X × X → R is a
reproducing kernel of a Hilbert space H of real-valued functions on X if and
only if

(i) ∀t ∈ X , k(·, t) ∈ H;

(ii) ∀t ∈ X ,∀f ∈ H, 〈f, k(·, t)〉 = f(t).

• straightforward to prove equivalence with the first characterization.
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A word on continuity

Proposition 2. Let k be a positive denite kernel on a topological space X ,
and H the associated RKHS. If k(x,y) is continuous for all x,y ∈ X , then all
the functions in H are continuous functions of X 7→ R.

Proof. Let f be an arbitrary function in H,

|f(x) − f(y)| = |〈f, k(x, ·) − k(y, ·)〉| ≤
CS

‖f‖ ‖k(x, ·) − k(y, ·)‖,

Remember that ‖k(x, ·) − k(y, ·)‖ = k(x,x) + k(y,y) − 2k(x,y).
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A more intuitive perspective: Feature maps

Theorem 3. A function k on X × X is a positive definite kernel if and only if
there exists a set T and a mapping φ from X to l2(T ), the set of real
sequences {ut, t ∈ T} such that

∑

t∈T |ut|2 <∞, where

∀(x,y ) ∈ X × X , k(x,y) =
∑

t∈T
φ(x)t φ(y)t = 〈φ(x), φ(y)〉l2(X)

• A very popular perspective in the machine learning world.

• Equivalent to previous definitions, less stressed in the RHKS literature.

x −→ φ(x) =













...

...
φ(x)t

...

...













t∈T
where the φt are a set of – possibly infinite but countable – features.
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kernels → Gram matrices

• If X = {xi}i∈I in X ,
KX = [k(xi,xj)]i,j∈I � 0.

• If one applies any transformation of KX which keeps eigenvalues nonnegative,

r : Sn 7−→ Sn
K −→ r(K),

r(K) is a valid positive definite matrix and hence a kernel on X .

• examples: K + t(t > 0),K2, eK, etc.

• in fact, if K = P∆P T , any transformation that preserves the spectrum’s
non-negativity would be ok.

• Yet... this kernel is only valid on X , the sample, not the whole space X .

Meaning somehow... Gram matrices 9 kernels
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positive definite kernels and distances

• Kernels are often called similarities.

• the higher k(x,y), the more similar x and y.

• With distances, the lower d(x,y), the closer x and y.

• Many distances exist in the literature. Can they be used to define kernels?

what is the link between kernels and distances?

high similarity
?
= small distance

• At least true for the Gaussian kernel k(x,y) = e−‖x−y‖2/2σ2
...

• Important theorems taken from [BCR84].
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Distances

Definition 4 (Distances, or metrics). A nonnegative-valued function d on
X × X is a distance if it satisfies, ∀x,y, z ∈ X :

(i) d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y (non-degeneracy)

(ii) d(x,y) = d(y,x) (symmetry),

(iii) d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality)

• Very simple example: if X is a Hilbert space, ‖x − y‖ is a distance. It is
usually called a... Hilbertian distance.

• By extension, any distance d(x,y) which can be written as ‖φ(x) − φ(y)‖
where φ maps X to any Hilbert space is called a Hilbertian metric.

• Useful. To build Gaussian kernel, Laplace kernels k(x,y) = e−t‖x−y‖...

• Yet does not suffice:
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the missing link: negative definite kernels

Definition 5 (Negative Definite Kernels). A symmetric function ψ : X ×X → R

is a negative definite (n.d.) kernel on X if

n
∑

i,j=1

cicj ψ (xi, xj) ≤ 0 (1)

holds for any n ∈ N, x1, . . . , xn ∈ X and c1 . . . , cn ∈ R such that
∑n
i=1 ci = 0.

• Example ψ(x,y) = ‖x − y‖2.

◦ prove by decomposing into ‖xi‖2 + ‖xj‖2 − 2〈xi,xj 〉
• N (X ) is also a closed convex cone.

important example: k is p.d. ⇒ −k is n.d.
Converse completely false.
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negative definite kernels & positive definite kernels

A first link between these two kernels:

Proposition 4. Let x0 ∈ X and let ψ : X × X → R be a symmetric kernel. Let

ϕ(x,y)
def
= ψ(x, x0) + ψ(y, x0) − ψ(x,y) − ψ(x0, x0).

Then k is positive definite ⇔ ψ is negative definite.

• Example: ‖x − x0‖2 + ‖y − x0‖2 − ‖x − y‖2 is a p.d. kernel.
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Proof.

• ⇒ For x1, · · · ,xn, and c1, · · · , cn s.t.
∑n
i=1 ci = 0,

n
∑

i,j=1

cicjϕ(xi,xj) = −
n

∑

i,j=1

cicjψ(xi,xj) ≥ 0.

• ⇐ For x1, · · · ,xn and c1, · · · , cn, let c0 = −∑n
i=1. Set x0 = x0. Then

0 ≥
n

∑

i,j=0

cicjψ(xi,xj)

=

n
∑

i,j=1

cicjψ(xi,xj) +

n
∑

i=1

cic0ψ(xi, x0) +

n
∑

j=1

c0cjψ(x0,xj) + c20ψ(x0, x0).

=
n

∑

i,j=1

[ψ(xi, x0) + ψ(xj, x0) − ψ(xi,yj) − ψ(x0, x0)] =
n

∑

i,j=1

cicjϕ(xi,xj).
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negative definite kernels & positive definite kernels

Proposition 5. For a p.d. kernel k ≥ 0 on X × X , the following conditions are
equivalent

(i) − log k ∈ N (X ),

(ii) kt is positive definite for all t > 0.

If k satisfies either, k is said to be infinitely divisible,

Proof.

• − log k = limn→∞ n(1 − k
1
n) which is the limit of a series of n.d. kernels if (ii)

is true, hence (ii) ⇒ (i).

• conversely, if − log k ∈ N (X ) we use Proposition 4. Writing ψ = − log k and
choosing x0 ∈ X we have

kt = e−tψ(x,y) = etψ(x0,x0)etϕ(x,y)e−tψ(x,x0)e−tψ(y,x0) ∈ P(X )
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negative definite kernels: (Hilbertian distance)2 + ...
Proposition 6. Let ψ : X × X be a n.d. kernel. Then there is a Hilbert space
H and a mapping φ from X to H such that

ψ(x,y) = ‖φ(x) − φ(y)‖2 + f(x) + f(y), (2)

where f : X → R. If ψ(x, x) = 0 for all x ∈ X then f can be chosen as zero. If
the set {(x,y)|ψ(x,y) = 0} is exactly {(x,x),x ∈ X} then

√
ψ is a Hilbertian

distance.

Proof. Fix x0 and define

ϕ(x,y)
def
=

1

2
[ψ(x, x0) + ψ(y, x0) − ψ(x,y) − ψ(x0, x0)] .

By Proposition 4 ϕ is p.d. hence there is a RKHS and mapping φ such that
ϕ(x,y) = 〈φ(x), φ(y) 〉. Hence

‖φ(x) − φ(y)‖2 = ϕ(x,x) + ϕ(y,y) − 2ϕ(x,y)

= ψ(x,y) − ψ(x,x) + ψ(y,y)

2
.
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distances & negative definite kernels

• whenever a n.d. kernel ψ

◦ vanishes on the diagonal, i.e. on {(x, x), x ∈ X},
◦ is 0 only on the diagonal, to ensure non-degeneracy,

→ √
ψ is a Hilbertian distance for X .

• More generally, for a n.d. kernel ψ,

√

ψ(x,y) − ψ(x,x)

2
− ψ(y,y)

2
is a (pseudo)metric for X .

• On the contrary, to each distance does not always correspond a n.d. kernel
(Monge-Kantorovich distance, edit-distance etc..)
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In summary...

diagonal

Hilbertian
   metrics

infinitely 
divisible kernels

vanishing

d =
√
ψ

D(X )
N (X )

ψ = d2

P(X )

P∞(X )

k = exp(−ψ)

ψ = − log k

d(x, y) =
q

ψ(x, y) − ψ(x,x)+ψ(y,y)
2

• Set of distances on X is D(X ), Negative definite kernels N (X ), positive and
infinitely divisible positive kernels P(X ) and P∞(X ) respectively.
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Some final remarks on N (X ) and P(X )

• N (X ) is a cone. Additionally,

◦ if ψ ∈ N (X ), ∀c ∈ R, ψ + c ∈ N (X ).
◦ if ψ(x, x) ≥ 0 for all x ∈ X , ψα ∈ N (X ) for 0 < α < 1 since

ψα =
α

Γ(1 − α)

∫ ∞

0

t−α−1(1 − e−tψ)dt

and log(1 + ψ) ∈ N (X ) since

log(1 + ψ) =

∫ ∞

0

(1 − e−tψ)
e−t

t
dt.

◦ if ψ > 0, then log(ψ) ∈ N since

log(ψ) = lim
c→∞

log

(

ψ +
1

c

)

= lim
c→∞

log (1 + cψ) − log c
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Some final remarks on D(X ),N (X ),P(X )

• P(X ) is a cone. Additionally,

◦ The pointwise product k1k2 of two p.d. kernels if a p.d. kernel
◦ kn ∈ P(X ) for n ∈ N. (k + c)n too...as well as exp(k) ∈ P(X ):

⊲ exp(k) =
∑∞
i=0

ki

i! , a limit of p.d. kernels.
⊲ exp(k) = exp(−(−k)) where −k ∈ N (X ).

• The sum of two infinitely divisible kernels is not necessarily infinitely divisible.

◦ − log k1 and − log k2 might be in N (X ), but − log(k1 + k2)?...
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Defining kernels
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Intuitively an important issue...

Remember that kernel methods drop all previous information

dataset x3

x4

x5
x2

x1

convex optimization

K5×5, kernel matrix

k

α

to proceed exclusively with K.

if the kernel K is poorly informative, the optimization cannot be very useful...
it is therefore crucial that the kernel quantifies noteworthy similarities.
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Kernels on vectors

(relatively) easy case: we are only given feature vectors,
with no access to the original data.

• Reminder (copy paste of previous slide!): for a family of kernels k1, · · · , kn, · · ·
◦ The sum

∑n
i=1 λiki is p.d., given λ1, . . . , λn ≥ 0

◦ The product ka1
1 · · · kann is p.d., given a1, . . . , an ∈ N

◦ limn→∞ kn is p.d. (if the limit exists!).

• Using these properties we can prove the p.d. of

◦ the polynomial kernel kp(x, y) = (〈x,y 〉 + b)d, b > 0, d ∈ N,

◦ the Gaussian kernel kσ(x, y) = e
−‖x−y‖2

2σ2 which can be rewritten as

kσ(x, y) =

[

e
−‖x‖2

2σ2 e
−‖y‖2

2σ2

]

·
[ ∞
∑

i=0

〈x,y 〉i
i!

]
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Kernels on vectors

◦ the Laplace kernels, using some n.d. kernel weaponry,

kλ(x, y) = e−λ‖x−y‖a, 0 < λ, 0 < a ≤ 2

◦ the all-subset Gaussian kernel in R
d,

k(x, y) =
d

∏

i=1

(

1 + ae−b(xi−yi)
2
)

=
∑

I⊂{1,··· ,d}
a#(I)e−b‖xI−yI‖2

.

◦ A variation on the Gaussian kernel: Mahalanobis kernel,

kΣ(x, y) = e−(x−y)TΣ−1(x−y),

idea: correct for discrepancies between the magnitudes and correlations of
different variables.

◦ Usually Σ is the empirical covariance matrix of a sample of points.
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Kernels on vectors

• These kernels can be seen as meta-kernels which can use any feature
representation.

• Example: Gaussian kernel of Gaussian kernel feature maps,

kG2(x,y) = kG

(

e
−‖x−·‖2

2σ2 , e
−‖y−·‖2

2σ2

)

= e
−2−e

−‖x−y‖2
2σ2

2λ2 .

• Not sure this is very useful though!

• Indeed, the real challenge is not to define funky kernels,

the challenge is to tune the parameters b, d, σ,Σ.
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Kernels on structured objects

• Structured objects?

◦ texts, webpages, documents
◦ sounds, speech, music,
◦ images, video segments, movies,
◦ 3d structures, sequences, trees, graphs

• Structured objects means

◦ objects with a tricky structure,
◦ which cannot be simply embedded in a vector space of small dimensionality,
◦ without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space
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Vectors in R
n
+ and Histograms

• A powerful and popular feature representation for structured objects:
histograms of smaller building-blocks of the object:

• histograms are simple instances of probability measures,

◦ nonnegative coordinates, sum up to 1.
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Standard metrics for Histograms

Information geometry, introduced yesterday, studies distances between densities.

• Reference : [AN01]

• An abridged bestiary of negative definite distances on the probability
simplex:

ψJD(θ, θ′) = h

(

θ + θ′

2

)

− h(θ) + h(θ′)
2

,

ψχ2(θ, θ′) =
∑

i

(θi − θ′i)
2

θi + θ′i
, ψTV (θ, θ′) =

∑

i

|θi − θ′i|,

ψH2(θ, θ
′) =

∑

i

|
√

θi −
√

θ′i|2, ψH1(θ, θ
′) =

∑

i

|
√

θi −
√

θ′i|.

• Recover kernels through

k(θ, θ′) = e−tψ, t > 0
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Information Diffusion Kernel [LL05,ZLC05]

• Solve the heat equation on the multinomial manifold, using the Fisher metric

• Approximate the solution with

kΣd(θ, θ
′) = e−

1
t arccos2(

√
θ·
√
θ′),

• arccos2 is the squared geodesic distance between θ and θ′ as elements from
the unit sphere (θi →

√
θi).

• In [ZLC05]: the use of

kΣd(θ, θ
′) = e−

1
t arccos(

√
θ·
√
θ′),

is advocated.

• the geodesic distance is a n.d. kernel on the whole sphere (arccos2 is not).
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Transportation Metrics for Histograms

Beyond information geometry, the family of transportation distances.

• Suppose r = (r1, · · · , rd) and c = (c1, · · · , cd) are two histograms in R
n
+.

• Define the set of transportations

U(r, c) = {F ∈ R
d×d
+ |F1 = r, FT1 = c}.

• Transportation distances between r and c:

dcost(rc) = min
F∈U(r,c)

cost(F ).

Monge-Kantorovich: cost(F ) = 〈F,D〉 where D is a n.d. matrix.

• dcost is not n.d. in the general case.

• Alternatives:

kcost(rc) =

∫

F∈U(r,c)

e−cost(F ).

• works when cost = 0: the volume of U(r, c) is a p.d. kernel of r and c. [Cut07]
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Statistical Modeling and Kernels

Histograms cannot always summarize efficiently the structures of X

• Statistical models of complex objects provide richer explanations:

◦ Hidden Markov Models for sequences and time-series,
◦ VAR, VARMA, ARIMA etc. models for time-series,
◦ Branching processes for trees and graphs
◦ Random Markov Fields for images etc.

• {x1, · · · ,xn} are interpreted as i.i.d realizations of one or many densities on X .

• These densities belong to a model {pθ, θ ∈ Θ ⊂ R
d}

Can we use generative (statistical) models
in

discriminative (kernel and metric based) methods?
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Fisher Kernel

• The Fisher kernel [JH99] between two elements x,y of X is

kθ̂(x,y) =

(

∂ lnpθ(x)

∂θ

∣

∣

θ̂

)T

J−1

θ̂

(

∂ lnpθ(y)

∂θ

∣

∣

θ̂

)

,

◦ θ̂ has been selected using sample data (e.g.MLE),

◦ J−1

θ̂
is the Fisher information matrix computed in θ̂.

• The statistical model {pθ, θ ∈ Θ} provides:

◦ finite dimensional features through the score vectors,
◦ A Mahalanobis metric associated with these vectors through Jθ̂.

• Alternative formulation:

kθ̂(x, y) = e
− 1
σ2(∇θ̂

ln pθ(x)−∇
θ̂
ln pθ(y))

T
J−1

θ̂
(∇θ̂

ln pθ(x)−∇
θ̂
ln pθ(y))

.

with the meta-kernel idea.

EPAT’10 - M. Cuturi 64



Fisher Kernel Extended [TKR+02,SG02]

• Minor extensions, useful for binary classification:

• Estimate θ̂1 and θ̂2 for each class respectively,

• consider the score vector of the likelihood ratio

φθ̂1,θ̂2 : x 7→







∂ ln
pθ1(x)

pθ2(x)

∂ϑ

∣

∣

∣

ϑ̂=(θ̂1,θ̂2)






,

where ϑ = (θ1, θ2) is in Θ2.

• Use this logratio’s score vector to propose instead the kernel

(x, y) 7→ φθ̂1,θ̂2(x)Tφθ̂1,θ̂2(y).
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Mutual Information Kernel: densities as feature extractors

• More bayesian flavor → drops maximum-likelihood estimation of θ. [See02]

• Instead, use prior knowledge on {pθ, θ ∈ Θ} through a density ω on Θ

• Mutual information kernel kω:

kω(x,y) =

∫

Θ

pθ(x)pθ(y)ω(dθ).

• The feature maps 0 ≤ pθ(x) ≤ 1 and 0 ≤ pθ(y) ≤ 1.

kω is big whenever many common densities pθ
score high probabilities for both x and y

• Explicit computations sometimes possible, namely conjugate priors.

• Example: context-tree kernel for strings.
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Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximum a posteriori approximation of the MI kernel.

• What? How? by setting the prior ω to the multivariate Gaussian density

N (θ̂, J−1

θ̂
),

an approximation known as Laplace’s method,

• Writing

Φ(x) = ∇θ̂ ln pθ(x) =
∂ ln pθ(x)

∂θ

∣

∣

θ̂

we get
log pθ(x) ≈ log pθ̂(x) + Φ(x)(θ − θ̂).
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Mutual Information Kernel & Fisher Kernels

• Using N (θ̂, J−1

θ̂
) for ω yields

k(x, y) =

∫

Θ

pθ(x)pθ(y)ω(dθ),

≈ C

∫

Θ

elog pθ̂(x)+Φ(x)T (θ−θ̂)elog pθ̂(y)+Φ(y)T (θ−θ̂) e−(θ−θ̂)TJ
θ̂
(θ−θ̂)dθ

= Cpθ̂(x)pθ̂(y)

∫

Θ

e(Φ(x)+Φ(y))T (θ−θ̂)+(θ−θ̂)TJ
θ̂
(θ−θ̂)dθ

= C ′pθ̂(x)pθ̂(y)e
1
2(Φ(x)+Φ(y))TJ−1

θ̂
(Φ(x)+Φ(y))

(1)

• the kernel

k̃(x, y) =
k(x, y)

√

k(x, x)k(y, y)

is equal to the Fisher kernel in exponential form.
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Marginalized kernels - Graphs and Sequences

• Similar ideas: leverage latent variable models. [TKA02,KTI03]

• For location or time-based data,

◦ the probability of emission of a token xi is conditioned by
◦ an unobserved latent variable si ∈ S, where S is a finite space of possible

states.

• for observed sequences x = (x1, · · · , xn),y = (y1, · · · , yn), sum over all
possible state sequences the weighted product of these probabilities:

k(x, y) =
∑

s∈S

∑

s′∈S
p(s|x) p(s′|y)κ ((x, s) , (y, s′))

• closed form computations exist for graphs & sequences.

EPAT’10 - M. Cuturi 69



Kernels on MLE parameters

• Use model directly to extract a single representation from observed points:

x 7→ θ̂x, y 7→ θ̂y,

through MLE for instance.

• compare x and y through a kernel kΘ on Θ,

k(x, y) = kΘ(θ̂x, θ̂y).

• Bhattacharrya affinities:

kβ(x,y) =

∫

X
pθ̂x(z)

βpθ̂y(z)
βdz

for β > 0.
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Semigroup Kernels : Building blocks

Loose algebraic structure: Semigroups [BCR84]

• Importance: unifying theory for many kernels, constructive perspective.

• a semigroup (S,+) is a set S 6= ∅ endowed with an associative

composition + with neutral element 0.

• An involutive semigroup (S,+, ∗) is endowed with an involution ∗ : S → S
such that ∀x in S, (x∗)∗ = x.

• Examples:

◦ S is the set of strings, + is the concatenation, 0 is the empty string. ∗ is either
the identity or the operation ABCD → DCBA.

◦ S is a group, and ∗ is the inverse. e.g. (Rd,+,−)
◦ S is R

d
+ with the + operation and ∗ is the identity.

• We only consider abelian (+ is commutative) semigroups.
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Semigroup Kernels

• a semigroup kernel is a kernel k defined as

k(x, y)
def
= ϕ(x+ y∗),

where ϕ : S 7→ R.

• → quantify similarity by looking only at x+ y∗.

• Examples in R
d,

k(x, y) = ϕ(x− y), ∗(x) = −x,
or

k(x, y) = φ(x+ y), ∗(x) = x

• Example in M1(R
d), the space of probability measures on R

d,

k(µ, µ′)
def
=

1
√

detΣ
(

µ+µ′
2

)

,
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Semigroup Kernels and Semicharacters

• Semicharacters: real-valued function ρ on an Abelian semigroup (S,+) s.t.

(i) ρ(0) = 1,
(ii) ∀s, t ∈ S, ρ(s+ t) = ρ(s)ρ(t),
(iii) ∀s ∈ S, ρ(s) = ρ(s∗).

• For (R+,+, Id), semicharacters are exactly functions s→ eλs. indeed,

◦ eλ(s+t) = eλseλt

• For (R,+,−), semicharacters are exactly functions s→ eiλs. indeed,

◦ eiλ(s−t) = eiλse−iλt, eiλs = e−iλs.

• Ŝ is the set of bounded semicharacters.

The building blocks of (bounded) semigroup kernels are semicharacters.
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Semigroup Kernels and Semicharacters

• Proved in a fundamental theorem of Bochner [Boc33], generalized by [BCR84]:

Theorem 7 (Integral representation of p.d. functions). A bounded function
ϕ : S → R is p.d. if and only if it there exists a non-negative measure ω on
Ŝ such that:

ϕ(s) =

∫

Ŝ

ρ(s) dω(ρ).

In that case the measure ω is unique.

• Proof idea

◦ Semicharacters are extreme rays of the cone of positive definite kernels.
◦ Choquet’s theory helps us prove that any point in that cone is a convex

combination of extreme rays (a barycentre)
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Bochner Theorems in (Rd,+,−) and (Rd+,+, Id)

• ∗ = −: ∃! non-negative measure ω on R
d s.t.

ϕ(x) =

∫

Rd
eix

T rdω(r);

ϕ is the Fourier transform of a non-negative measure ω on R
d.

◦ Kernels of the type k(x, y) = ϕ(x− y) also known as Radial Basis

Functions have such a decomposition.

• ∗ = Id: Suppose k is bounded & s.t. k(x, y) = ψ(x+ y). ∃! non-negative
measure ω on R

d s.t.

ψ(x) =

∫

Rd
e−x

T rdω(r);

ψ is the Laplace transform of a non-negative measure ω on R
d.
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