
Nesterov’s Acceleration

1

minX f(X) + (X)

Nesterov Accelerated Gradient

a.k.a
FISTA

f �-smooth. Set s1 = 1 and ⌘ = 1
�
. Set

y0. Iterate by increasing t:

• gt 2 @f(yt)

• st+1 =

1+
p

1+4s2t
2

• yt = xt +
st�1
st+1

(xt � xt�1)

• xt+1 = prox(yt � ⌘gt|⌘)

Nesterov’s Acceleration

2
51 / 73

f �-smooth. Set s1 = 1 and ⌘ = 1
�
. Set

y0. Iterate:

• gt 2 @f(yt)

• xt = prox(yt � ⌘gt|⌘)

• st+1 =

1+
p

1+4s2t
2

• yt = xt +
st�1
st+1

(xt � xt�1)

source: T. Suzuki

f(xt)� f(x⇤)  2�kxt � x

⇤k
t

2

Nesterov’s Acceleration

3

Iteration
0 20 40 60 80 100 120

R
el

at
iv

e
ob

je
ct

iv
e

(f(
x t) -

 f
*)

10-8

10-6

10-4

10-2

100

102

104

Normal
Nesterov

Nesterov’s acceleration v.s. normal gradient descent
Lasso: n = 8, 000, p = 500.

52 / 73

source: T. Suzuki

min✓
1
n

P
i(✓

T
xi � yi)2 + �k✓k1

Stochastic Gradient

4

We want to minimize 
 
 
 

Due to practical constraints, samples only come one
by one, each at a time t, and cannot be stored. Only
previous parameter is stored. We use a double
approximation

E[l(✓, Z)] ⇡ l(✓, zt)

⇡ l(✓t�1, zt) + hrl(✓t�1, zt),✓ i

min
✓2Rp

L(✓) := E[l✓(Z)]

Stochastic Gradient

5

To approximate the minimization of  
 
 
 

we use the approximated problem, only valid around the
previous iterate

min
✓2Rp

E[l✓(Z)]

✓t := arg min
✓2Rp

hrl(✓t�1, zt),✓ i+ 1

2⌘t
k✓t�1 � ✓k2

SG (no regularization)

6

Update ✓t = ✓t�1 � ⌘tgt

Sample zt ⇠ P (Z).

Set ✓0 and sequence ⌘t. Repeat:

Compute subgradient gt 2 @✓l(✓, zt)

Stochastic Gradient Method (regularization)

Output : ✓̄T = 1
T+1

PT
t=0 ✓t

min
✓2Rp

L(✓) := E[l✓(Z)]

SG (regularization)

7

Sample zt ⇠ P (Z).

Set ✓0 and sequence ⌘t. Repeat:

Compute subgradient gt 2 @✓l(✓, zt)

Stochastic Gradient Method (regularization)

Update ✓t = prox(✓t�1 � ⌘tgt |⌘t)

Output : ✓̄T = 1
T+1

PT
t=0 ✓t

We want to minimize now:
min
✓2Rp

L (✓) := E[l✓(Z)] + (✓)

Polynomial Averaging

8

Sample zt ⇠ P (Z).

Set ✓0 and sequence ⌘t. Repeat:

Compute subgradient gt 2 @✓l(✓, zt)

Stochastic Gradient Method (regularization)

Update ✓t = prox(✓t�1 � ⌘tgt |⌘t)

Output : ✓̄T = 2
(T+1)(T+2)

PT
t=0(t+ 1)✓t

Batch Problems

9

• SGMethods have several drawbacks, chief among
them is the choice of a stepsize.

• Is there a setting where this can be mitigated? Yes,
when the expectation is in fact a large sum:

min
✓2Rp

L (✓) := E[l✓(Z)] + (✓)

+

min
✓2Rp

1

n

nX

i=1

l(✓, zi) + (✓)

Batch Methods

10

•We would like to have the benefits of SGM (low cost
per iteration) without the disadvantages (slow
convergence near optimum, step size selection)

source: https://wikidocs.net/3413

https://wikidocs.net/3413

Batch Methods

11

Typical behavior

Elaplsed time (s)
0 0.5 1 1.5 2 2.5 3 3.5

Tr
ai

ni
g

er
ro

r

0

0.1

0.2

0.3

0.4

0.5

SGD
Batch

Elaplsed time (s)
0 0.5 1 1.5 2 2.5 3 3.5

G
en

er
al

iz
at

io
n

er
ro

r

0

0.1

0.2

0.3

0.4

0.5

Normal gradient descent v.s. SGD
Logistic regression with L1-regularization: n = 10, 000, p = 2.

SGD decreases the objective rapidly, and after a while, the batch gradient
method catches up and slightly surpasses. 72 / 73

Logistic Regression L1 regularization
source: T. Suzuki

Three Methods

12

•Primal methods
!

• Stochastic Average Gradient (A) descent, SAG(A) (Le Roux et
al., 2012, Schmidt et al., 2013, Defazio et al., 2014)

!
• Stochastic Variance Reduced Gradient descent, SVRG

(Johnson and Zhang, 2013, Xiao and Zhang, 2014)
!

•Dual methods (see Fenchel duality)
• Stochastic Dual Coordinate ascent, SDCA (Shalev-Shwartz and

Zhang, 2013a)

Primal Methods

13

smooth strongly!
convex

min
✓2Rp

1

n

nX

i=1

li(✓) + (✓)

We want to approximate r 1
n

Pn
i=1 li(✓)

Primal Methods

13

smooth strongly!
convex

min
✓2Rp

1

n

nX

i=1

li(✓) + (✓)

We want to approximate r 1
n

Pn
i=1 li(✓)

Ei⇠unif{1,...,n}[rli(✓)] =
1

n

X

i

rli(✓) = rL(✓)

Randomizing points in the dataset gives a way to get an
unbiased estimator of the gradient.

Primal Methods

13

smooth strongly!
convex

min
✓2Rp

1

n

nX

i=1

li(✓) + (✓)

We want to approximate r 1
n

Pn
i=1 li(✓)

Ei⇠unif{1,...,n}[rli(✓)] =
1

n

X

i

rli(✓) = rL(✓)

Problem: Variance !

SVRG

14

g = rli(✓)�rli(✓̂) +
1

n

nX

j=1

rlj(✓̂)

•easy to show that this gradient estimate is unbiased

•Variance is controlled by how far are.✓, ✓̂

SVRG

14

g = rli(✓)�rli(✓̂) +
1

n

nX

j=1

rlj(✓̂)

•easy to show that this gradient estimate is unbiased

•Variance is controlled by how far are.✓, ✓̂

var[g] =
1

n

nX

i=1

krli(✓)�rli(✓̂) +rL(✓̂)�rL(✓)k2

=
1

n

nX

i=1

krli(✓)�rli(✓̂)k2 � krL(✓̂)�rL(✓)k2

 1

n

nX

i=1

krli(✓)�rli(✓̂)k2

 �2k✓ � ✓̂k2

SVRG

15

SVRG
Set

ˆ✓0. For t = 1, . . . , T ,

• Set

ˆ✓ = ˆ✓t�1
. ✓0 =

ˆ✓.

• ĝ =

1
n

Pn
i=1 rli(ˆ✓) : full gradient, at ˆ✓.

• For k = 1, . . . ,m

– Sample i ⇠ {1, . . . , n}
– g = rli(✓k�1)�rli(ˆ✓) + ĝ : variance reduction

– ✓k = prox(✓k�1 � ⌘g | ⌘)

• ˆ✓t = 1
m

Pm
k=1 ✓k

SAGA

16

(SVRG) g = rli(✓t�1)�rli(✓̂) +
1
n

Pn
j=1 rlj(✓̂)

(SAGA) g = rli(✓t�1)�rli(✓̂i) +
1
n

Pn
j=1 rlj(✓̂j)

ˆ✓ depends on the data index.

ˆ✓i is updated at every iteration.

(
ˆ✓i = ✓t�1 i chosen
ˆ✓i unchanged otherwise.

 Consequence: larger storage is necessary, but no double loop

SAGA

17

SAGA
• Set ĝi = ḡ = 0, i 2 {1, . . . , n}, Set ✓..

– Pick i 2 {1, . . . , n} randomly.

– Update gi = rli(✓)
– Estimate gradient ĝ = gi � ĝi + ḡ

– Update average gradient ḡ = ḡ + 1
n (gi � ĝi).

– Update stored gradients ĝi = gi.

– Update ✓ prox(✓ � ⌘ĝ|⌘)

Step size: ~1/γ , convergence guaranteed.
In practice: important to use mini-batches.

Recent Extensions: Point SAGA

18

No regularizer required, proximal operator of each function.

Dual Methods

19

• Set x

0
= (x

0
1, . . . , x

0
n),

• For k = 1, . . . ,K

– x

k+1
i = argmin

y2R
f(x

k+1
1 , . . . , x

k+1
i�1 , y, x

k
i+1, . . . , x

k
n)

source: wikipedia

Dual Methods

19

Reminders on Coordinate Descent

• Set x

0
= (x

0
1, . . . , x

0
n),

• For k = 1, . . . ,K

– x

k+1
i = argmin

y2R
f(x

k+1
1 , . . . , x

k+1
i�1 , y, x

k
i+1, . . . , x

k
n)

source: wikipedia

Dual Methods

19

Reminders on Coordinate Descent

source: wikipedia

Dual Methods

19

Reminders on Coordinate Descent

source: wikipedia

Dual Methods

19

Reminders on Coordinate Descent

source: wikipedia

Dual Methods

19

Reminders on Coordinate Descent

source: wikipedia

To ensure success of CD, some progress must be guaranteed.
Separability of the objective function helps.

Dual Methods

20 source: wikipedia

• Set ✓0 = (✓01, . . . , ✓
0
p),

• For k = 1, . . . ,K

– Sample j.

– Compute gj = @f(✓)/@✓j

– ✓j argmin

y2R
gjy + j(y) +

1
2⌘t
ky � ✓jk2

Dual Methods

20

Coordinate Descent on Primal Problem

source: wikipedia

• Set ✓0 = (✓01, . . . , ✓
0
p),

• For k = 1, . . . ,K

– Sample j.

– Compute gj = @f(✓)/@✓j

– ✓j argmin

y2R
gjy + j(y) +

1
2⌘t
ky � ✓jk2

Regularizer must be separable.

Fenchel Duality Theorem

21

Theorem

Let f : Rp ! ¯

R and g : Rq ! ¯

R be closed convex, and A 2 Rq⇥p

a linear

map. Suppose that either condition (a) or (b) is satisfied. Then

inf

x2Rp
f(x) + g(Ax) = sup

y2Rq
�f

⇤
(A

T

y)� g

⇤
(�y)

min
✓2Rp

1

n

nX

i=1

l✓(zi) + (✓) l✓(zi) = l(yi, xT
i ✓)

sup
y2Rn

1

n

X

i

l⇤i (yi) + ⇤(�XT y/n)

✓⇤ = r ⇤(�XTy⇤/n)

