Nesterov's Acceleration

$$\min_X f(X) + \psi(X)$$

Nesterov Accelerated Gradient

 $f \gamma$ -smooth. Set $s_1 = 1$ and $\eta = \frac{1}{\gamma}$. Set y_0 . Iterate by increasing t:

•
$$g_t \in \partial f(y_t)$$

•
$$s_{t+1} = \frac{1 + \sqrt{1 + 4s_t^2}}{2}$$

•
$$y_t = x_t + \frac{s_t - 1}{s_{t+1}} (x_t - x_{t-1})$$

•
$$x_{t+1} = \operatorname{prox}(y_t - \eta g_t | \eta \psi)$$

a.k.a FISTA

Nesterov's Acceleration

Nesterov's Acceleration

Stochastic Gradient

We want to minimize

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} L(\boldsymbol{\theta}) := \mathbb{E}[\boldsymbol{l}_{\boldsymbol{\theta}}(Z)]$$

Due to practical constraints, samples only come **one by one**, each at a time *t*, and **cannot be stored**. Only previous parameter is stored. We use a double approximation

$$\mathbb{E}[\boldsymbol{l}(\boldsymbol{\theta}, Z)] \approx \boldsymbol{l}(\boldsymbol{\theta}, z_t) \\ \approx \boldsymbol{l}(\boldsymbol{\theta}_{t-1}, z_t) + \langle \nabla \boldsymbol{l}(\boldsymbol{\theta}_{t-1}, z_t), \boldsymbol{\theta} \rangle$$

Stochastic Gradient

To approximate the minimization of

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \mathbb{E}[\boldsymbol{l}_{\boldsymbol{\theta}}(Z)]$$

we use the approximated problem, only valid around the previous iterate

$$\theta_t := \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \langle \nabla \boldsymbol{l}(\theta_{t-1}, z_t), \boldsymbol{\theta} \rangle + \frac{1}{2\eta_t} \|\theta_{t-1} - \boldsymbol{\theta}\|^2$$

SG (no regularization)

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} L(\boldsymbol{\theta}) := \mathbb{E}[\boldsymbol{l}_{\boldsymbol{\theta}}(Z)]$$

Stochastic Gradient Method (regularization)

Set θ_0 and sequence η_t . Repeat:

Sample $z_t \sim P(Z)$.

Compute subgradient $g_t \in \partial_{\theta} \boldsymbol{l}(\theta, z_t)$

Update
$$\theta_t = \theta_{t-1} - \eta_t g_t$$

Output :
$$\bar{\theta}_T = \frac{1}{T+1} \sum_{t=0}^T \theta_t$$

SG (regularization)

We want to minimize now: $\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} L_{\psi}(\boldsymbol{\theta}) := \mathbb{E}[\boldsymbol{l}_{\boldsymbol{\theta}}(Z)] + \psi(\boldsymbol{\theta})$

Stochastic Gradient Method (regularization)

Set θ_0 and sequence η_t . Repeat:

Sample $z_t \sim P(Z)$.

Compute subgradient $g_t \in \partial_{\theta} \boldsymbol{l}(\theta, z_t)$

Update $\theta_t = \operatorname{prox}(\theta_{t-1} - \eta_t g_t | \boldsymbol{\eta_t} \psi)$

Output :
$$\bar{\theta}_T = \frac{1}{T+1} \sum_{t=0}^T \theta_t$$

Polynomial Averaging

Stochastic Gradient Method (regularization)

Set θ_0 and sequence η_t . Repeat:

Sample $z_t \sim P(Z)$.

Compute subgradient $g_t \in \partial_{\theta} \boldsymbol{l}(\theta, z_t)$

Update $\theta_t = \operatorname{prox}(\theta_{t-1} - \eta_t g_t | \boldsymbol{\eta_t} \psi)$

Output :
$$\bar{\theta}_T = \frac{2}{(T+1)(T+2)} \sum_{t=0}^T (t+1)\theta_t$$

Batch Problems

- SGMethods have several drawbacks, chief among them is the choice of a stepsize.
- Is there a setting where this can be mitigated? Yes, when the expectation is in fact a large sum:

Batch Methods

•We would like to have the benefits of SGM (low cost per iteration) without the disadvantages (slow convergence near optimum, step size selection)

Batch Methods

Logistic Regression L1 regularization

Three Methods

• Primal methods

- Stochastic Average Gradient (A) descent, SAG(A) (Le Roux et al., 2012, Schmidt et al., 2013, Defazio et al., 2014)
- Stochastic Variance Reduced Gradient descent, SVRG (Johnson and Zhang, 2013, Xiao and Zhang, 2014)
- Dual methods (see Fenchel duality)
 - Stochastic Dual Coordinate ascent, SDCA (Shalev-Shwartz and Zhang, 2013a)

Primal Methods

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta}) + \psi(\boldsymbol{\theta})$$

$$\underset{\text{smooth}}{\text{smooth}} \underset{\text{convex}}{\text{strongly}}$$

We want to approximate $\nabla \frac{1}{n} \sum_{i=1}^{n} l_i(\boldsymbol{\theta})$

Primal Methods

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta}) + \psi(\boldsymbol{\theta})$$

$$\underset{\text{smooth}}{\text{strongly}} \text{strongly}$$

$$\underset{\text{we want to approximate } \nabla \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta})}{\sum_{i=1}^{n} l_{i}(\boldsymbol{\theta})}$$

$$\mathbb{E}_{i \sim \text{unif}\{1, \dots, n\}} [\nabla l_{i}(\boldsymbol{\theta})] = \frac{1}{n} \sum_{i} \nabla l_{i}(\boldsymbol{\theta}) = \nabla \mathcal{L}(\boldsymbol{\theta})$$

Randomizing points in the dataset gives a way to get an unbiased estimator of the gradient.

Primal Methods

$$\begin{split} \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta}) + \psi(\boldsymbol{\theta}) \\ \text{smooth} \quad \begin{array}{l} \text{strongly} \\ \text{convex} \end{array} \end{split}$$

$$We \text{ want to approximate } \nabla \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\theta}) \\ \mathbb{E}_{i \sim \text{unif}\{1, \dots, n\}} [\nabla l_{i}(\boldsymbol{\theta})] = \frac{1}{n} \sum_{i} \nabla l_{i}(\boldsymbol{\theta}) = \nabla \mathcal{L}(\boldsymbol{\theta}) \end{split}$$

Problem: Variance !

SVRG

$$g = \nabla l_i(\boldsymbol{\theta}) - \nabla l_i(\hat{\boldsymbol{\theta}}) + \frac{1}{n} \sum_{j=1}^n \nabla l_j(\hat{\boldsymbol{\theta}})$$

•easy to show that this gradient estimate is unbiased •Variance is controlled by how far θ , $\hat{\theta}$ are.

SVRG

$$\begin{aligned} \operatorname{var}[g] &= \frac{1}{n} \sum_{i=1}^{n} \|\nabla l_{i}(\theta) - \nabla l_{i}(\hat{\theta}) + \nabla \mathcal{L}(\hat{\theta}) - \nabla \mathcal{L}(\theta)\|^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} \|\nabla l_{i}(\theta) - \nabla l_{i}(\hat{\theta})\|^{2} - \|\nabla \mathcal{L}(\hat{\theta}) - \nabla \mathcal{L}(\theta)\|^{2} \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \|\nabla l_{i}(\theta) - \nabla l_{i}(\hat{\theta})\|^{2} \\ &\leq \gamma^{2} \|\theta - \hat{\theta}\|^{2} \end{aligned}$$

SVRG

SVRG

Set $\hat{\theta}_0$. For $t = 1, \dots, T$,

• Set
$$\hat{\theta} = \hat{\theta}^{t-1}$$
. $\theta_0 = \hat{\theta}$.

•
$$\hat{g} = \frac{1}{n} \sum_{i=1}^{n} \nabla l_i(\hat{\theta})$$
: full gradient, at $\hat{\theta}$.

• For
$$k = 1, ..., m$$

- Sample
$$i \sim \{1, ..., n\}$$

- $g = \nabla l_i(\theta_{k-1}) - \nabla l_i(\hat{\theta}) + \hat{g}$: variance reduction
- $\theta_k = \operatorname{prox}(\theta_{k-1} - \eta g | \eta \psi)$

•
$$\hat{\theta}^t = \frac{1}{m} \sum_{k=1}^m \theta_k$$

SAGA

 $\hat{\theta}$ depends on the data index.

$$(SVRG) \quad g = \nabla l_i(\boldsymbol{\theta^{t-1}}) - \nabla l_i(\hat{\theta}) + \frac{1}{n} \sum_{j=1}^n \nabla l_j(\hat{\theta}) (SAGA) \quad g = \nabla l_i(\boldsymbol{\theta^{t-1}}) - \nabla l_i(\hat{\theta}_i) + \frac{1}{n} \sum_{j=1}^n \nabla l_j(\hat{\theta}_j)$$

 $\hat{\theta}_i$ is updated at every iteration.

$$\begin{cases} \hat{\theta}_i = \theta^{t-1} & i \text{ chosen} \\ \hat{\theta}_i \text{ unchanged} & \text{otherwise.} \end{cases}$$

Consequence: larger storage is necessary, but no double loop

SAGA

SAGA • Set $\hat{g}_i = \bar{g} = 0, i \in \{1, ..., n\}$, Set θ .. - Pick $i \in \{1, \ldots, n\}$ randomly. - Update $g_i = \nabla l_i(\theta)$ – Estimate gradient $\hat{g} = g_i - \hat{g}_i + \bar{g}$ - Update average gradient $\bar{g} = \bar{g} + \frac{1}{n}(g_i - \hat{g}_i)$. - Update stored gradients $\hat{g}_i = g_i$. - Update $\theta \leftarrow \operatorname{prox}(\theta - \eta \hat{g} | \eta \psi)$

Step size: $\sim 1/\gamma$, convergence guaranteed. In practice: important to use mini-batches.

Recent Extensions: Point SAGA

Algorithm 1

Pick some starting point x^0 and step size γ . Initialize each $g_i^0 = f'_i(x^0)$, where $f'_i(x^0)$ is any gradient/subgradient at x^0 . Then at step k + 1:

- 1. Pick index j from 1 to n uniformly at random.
- 2. Update x:

$$egin{aligned} z_{j}^{k} &= x^{k} + \gamma \left[g_{j}^{k} - rac{1}{n} \sum_{i=1}^{n} g_{i}^{k}
ight], \ x^{k+1} &= \mathrm{prox}_{j}^{\gamma} \left(z_{j}^{k}
ight). \end{aligned}$$

3. Update the gradient table: Set $g_j^{k+1} = \frac{1}{\gamma} (z_j^k - x^{k+1})$, and leave the rest of the entries unchanged $(g_i^{k+1} = g_i^k \text{ for } i \neq j)$.

No regularizer required, proximal operator of each function.

- Set $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$,
- For k = 1, ..., K

$$-x_{i}^{k+1} = \underset{y \in \mathbb{R}}{\arg\min} f(x_{1}^{k+1}, \dots, x_{i-1}^{k+1}, y, x_{i+1}^{k}, \dots, x_{n}^{k})$$

Reminders on Coordinate Descent

- Set $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$,
- For k = 1, ..., K

$$-x_{i}^{k+1} = \underset{y \in \mathbb{R}}{\arg\min} f(x_{1}^{k+1}, \dots, x_{i-1}^{k+1}, y, x_{i+1}^{k}, \dots, x_{n}^{k})$$

Reminders on Coordinate Descent

Reminders on Coordinate Descent

source: wikipedia

Reminders on Coordinate Descent

Reminders on Coordinate Descent

To ensure success of CD, some progress must be guaranteed. Separability of the objective function helps.

- Set $\theta^0 = (\theta_1^0, \dots, \theta_p^0),$
- For k = 1, ..., K
 - Sample j.
 - Compute $g_j = \partial f(\theta) / \partial \theta_j$
 - $\begin{array}{l} \theta_j \leftarrow \arg\min_{y \in \mathbb{R}} g_j y + \psi_j(y) + \frac{1}{2\eta_t} \|y \theta_j\|^2 \\ y \in \mathbb{R} \end{array}$

Coordinate Descent on Primal Problem

- Set $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$,
- For k = 1, ..., K
 - Sample j.
 - Compute $g_j = \partial f(\theta) / \partial \theta_j$
 - $\theta_j \leftarrow \underset{y \in \mathbb{R}}{\operatorname{arg\,min}} g_j y + \psi_j(y) + \frac{1}{2\eta_t} \|y \theta_j\|^2$

Regularizer must be separable.

Fenchel Duality Theorem

Theorem

Let $f : \mathbb{R}^p \to \overline{R}$ and $g : \mathbb{R}^q \to \overline{R}$ be closed convex, and $A \in \mathbb{R}^{q \times p}$ a linear map. Suppose that either condition (a) or (b) is satisfied. Then

$$\inf_{x \in \mathbb{R}^p} f(x) + g(Ax) = \sup_{y \in \mathbb{R}^q} -f^*(A^T y) - g^*(-y)$$

$$\begin{split} \min_{\boldsymbol{\theta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} l_{\boldsymbol{\theta}}(z_{i}) + \psi(\boldsymbol{\theta}) \\ \\ \sup_{\boldsymbol{y} \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i} l_{i}^{*}(y_{i}) + \psi^{*}(-X^{T}y/n) \end{split}$$

$$\boldsymbol{\theta^*} = \nabla \psi^* (-X^T \boldsymbol{y^*}/n)$$