
Distributed and Stochastic 
Optimization for  

Machine Learning

Marco Cuturi

Please install the following for the TP:  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notebook / jupyter. 



Reminders on Convexity: Sets

2

•Line segment between two points in Hilbert space: 

!
!

•A convex set contains all segments of all its points 

!

!

•Examples

Reminders: Convex set

line segment between x1 and x2: all points

{x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}

convex set: contains line segment between any two points in the set

C is convex ⇔ ∀x1, x2 ∈ C, 0 ≤ λ ≤ 1; λx1 + (1− λ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Reminders on Convexity: Epigraph
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•Epigraphs and domain 

Def

epi(f) = {(x, t) 2 Rp ⇥ R : f(x)  t}
dom(f) = {x 2 Rp

: f(x) < 1}

Epigraph and domain
Let R̄ := R ∪ {∞}.

Definition (Epigraph and domain)

The epigraph of a function f : Rp → R̄ is given by

epi(f ) := {(x , µ) ∈ Rp+1 : f (x) ≤ µ}.

The domain of a function f : Rp → R̄ is given by

dom(f ) := {x ∈ Rp : f (x) < ∞}.

epigraph

domain( ]
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Reminders on Convexity: Functions
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• Convex function
Def

f : Rp ! ¯R convex

m
8x1, x2 2 Rp

, 0  �  1,

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2)

R̄ = R [ {1}

• A function is convex iff its epigraph is.



convex loss functions for regression
• Label is a real number (regression) 
 
 
 
 
 

5

l(u, y) =
1

2

(u� y)2,

l⌧ (u, y) = (1� ⌧)max(u� y, 0) + ⌧ max(y � u, 0), ⌧ 2 [0, 1]

l"(u, y) = max(|y � u|� "), " > 0

quadratic

tau-quantile

eps-sensitive

u

huber
l�(u, y) =

(
1
2 (y � u)2 for |y � u|  �,

� |y � u|� 1
2�

2
otherwise.
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Convex loss functions (regression)

All well used loss functions are (closed) convex. The followings are convex
w.r.t. u with a fixed label y ∈ R.

Squared loss: ℓ(y , u) = 1
2(y − u)2.

τ -quantile loss: ℓ(y , u) = (1− τ)max{u − y , 0}+ τ max{y − u, 0}.
for some τ ∈ (0, 1). Used for quantile regression.
ϵ-sensitive loss: ℓ(y , u) = max{|y − u|− ϵ, 0} for some ϵ > 0. Used
for support vector regression.

 f-y
-3 -2 -1 0 1 2 3
0

1

2

3 τ-quantile

-sensitive

Squared

Huber
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convex loss functions for regression



• Label is a binary, prediction is a number 
 
 
 
 
 

7

logistic

u

convex loss functions for classification

l(u, y) = log(1 + exp(�yu)),

l(u, y) = |1� yu|+ = max(1� yu, 0),

l(u, y) = exp(�yu),

l(u, y) =

8
><

>:

0, yu � 1,
1
2 � yu, yu < 0,
1
2 (1� yu)2, otherwise.

hinge
exponential

smoothed hinge
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convex loss functions for regression

Convex surrogate loss (classification)

y ∈ {±1}
Logistic loss: ℓ(y , u) = log((1 + exp(−yu))/2).
Hinge loss: ℓ(y , u) = max{1− yu, 0}.
Exponential loss: ℓ(y , u) = exp(−yu).
Smoothed hinge loss:

ℓ(y , u) =

⎧
⎪⎨

⎪⎩

0, (yu ≥ 1),
1
2 − yu, (yu < 0),
1
2(1− yu)2, (otherwise).

 yf
-3 -2 -1 0 1 2 3
0

1

2

3

4
0-1
Logistic

exp
Hinge

Smoothed-hinge
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convex regularizers

 (✓) = k✓k22 = ✓T ✓,

 (✓) = k✓k1 =
X

i

|✓i|,

 (✓) = ak✓k1 + bk✓k22,

 (✓) = k✓ktr =
min(q,r)X

i

�j(✓)

ridge

L-1

elastic net

trace norm (for matrices)
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convex loss functions for regression

Convex regularization functions

Ridge regularization: R(x) = ∥x∥22 :=
∑p

j=1 x
2
j .

L1 regularization: R(x) = ∥x∥1 :=
∑p

j=1 |xj |.

Trace norm regularization: R(X ) = ∥X∥tr =
∑min{q,r}

k=1 σj(X )
where σj(X ) ≥ 0 is the j-th singular value.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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1

Bridge (=0.5)
L1
Ridge
Elasticnet

1
n

∑n
i=1(yi − z⊤i x)2 + λ∥x∥1: Lasso

1
n

∑n
i=1 log(1 + exp(−yiz⊤i x)) + λ∥X∥tr: Low rank matrix recovery
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Gradients
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Def

f(x+ ") = f(x) +rf(x)T "+ o(k"k2)

g(x+ ") = g(x) + g

0(x)"+ o("2)

For a di↵erentiable function

f : Rp ! ¯R, the gradient

of f at x 2 dom(f) is

rf(x) =

2

664

@f

@x1
(x)

.

.

.

@f

@xp
(x)

3

775



Subgradients
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Def

For convex function f : Rp ! ¯R, the subdi↵erential

of f at x 2 dom(f) is

@f(x) = {g 2 Rp|8y 2 Rp
, hy � x, g i+ f(x)  f(y)}

•Subgradients are natural generalization of gradients

@f(x0) = {rf(x0)}

@f(x1) = {g}



Legendre Transform
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Def

For a (possibly non convex) function f : Rp ! ¯R,
the convex conjugate of f is, 8y 2 Rp

,

f⇤
(y) = sup

x2Rp
hx, y i � f(x)



Legendre Transform
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Legendre Transform

15

0

-5

-10

5

-5 0 5

f(x)
y

10



Legendre Transform
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Legendre Transform
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-5 0 5

yx

yx � f(x)
f⇤(y)

x

⇤
y

f(x)

0 = y �rf(x⇤
y)

y 2 @f(x⇤
y)
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Legendre Transform
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Legendre Transform
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Legendre Transform
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Legendre Transform
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Def
For a (possibly non convex) function f : Rp ! ¯R,

the convex conjugate of f is 8y 2 Rp

,

f

⇤
(y) = sup

x2Rp
hx, y i � f(x)

f (x) f ∗(y)
Squared loss 1

2x
2 1

2y
2

Hinge loss max{1− x , 0}
{
y (−1 ≤ y ≤ 0),

∞ (otherwise).

Logistic loss log(1 + exp(−x))
{
(−y) log(−y) + (1 + y) log(1 + y) (−1 ≤ y ≤ 0),

∞ (otherwise).

L1 regularization ∥x∥1

{
0 (maxj |yj | ≤ 1),

∞ (otherwise).

Lp regularization
∑d

j=1 |xj |
p ∑d

j=1
p−1

p
p

p−1
|yj |

p
p−1

(p > 1)



Legendre Transform
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Def
For a (possibly non convex) function f : Rp ! ¯R,

the convex conjugate of f is 8y 2 Rp

,

f

⇤
(y) = sup

x2Rp
hx, y i � f(x)

f⇤
is convex, even if f is not.

y 2 @f(x) , f(x) + f

⇤(y) = hx, yi , x 2 @f

⇤(y)

8x, y, f(x) + f

⇤(y) � hx, yi



Fenchel Duality Theorem
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Theorem

Let f : Rp ! ¯

R and g : Rq ! ¯

R be closed convex, and A 2 Rq⇥p

a linear

map. Suppose that either condition (a) or (b) is satisfied. Then

inf

x2Rp
f(x) + g(Ax) = sup

y2Rq
�f

⇤
(A

T

y)� g

⇤
(�y)

(a)9x 2 Rp
s.t. x 2 ri(dom(f)) and Ax 2 ri(dom(g))

(b)9y 2 Rq
s.t. AT y 2 ri(dom(f⇤

)) and � y 2 ri(dom(g⇤))



Fenchel Duality Theorem
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Theorem

Let f : Rp ! ¯

R and g : Rq ! ¯

R be closed convex, and A 2 Rq⇥p

a linear

map. Suppose that either condition (a) or (b) is satisfied. Then

inf

x2Rp
f(x) + g(Ax) = sup

y2Rq
�f

⇤
(A

T

y)� g

⇤
(�y)

(a)9x 2 Rp
s.t. x 2 ri(dom(f)) and Ax 2 ri(dom(g))

(b)9y 2 Rq
s.t. AT y 2 ri(dom(f⇤

)) and � y 2 ri(dom(g⇤))



Fenchel Duality and ERM
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l✓(zi) = l(yi, xT
i ✓)min

✓2Rp

1

n

nX

i=1

l✓(zi) +  (✓)

X 2 Rn⇥p1
n

P
i l✓(zi) = l(y, X✓) = g(X✓)

supy2Rn � ⇤(�XT y)� g⇤(y) = � infy2Rn g⇤(y) +  ⇤(�XT y)

sup
y2Rn

X

i

l⇤i (yi) +  ⇤(�XT y)



Smoothness of Functions
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Def

smoothness: gradient is Lipschitz continuous

krf(x)�rf(x

0
)k  Lkx� x

0k

strong convexity: f is µ-strongly convex if

x ! f(x)�µ
2 kxk

2
is convex.

0 0 0



Smoothness of Functions
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Def
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)k  Lkx� x

0k
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Smoothness of Functions
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Theorem

f is L -smooth , f⇤
is

1
L - strongly convex.

0

its dual function

0 1

Logistic: loss is smooth, 
not strongly convex Dual Logistic: strongly convex,  

not smooth


