Distributed and Stochastic

Optimization for
Machine Learning

Marco Cuturi
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Machine Learning as Optimization

1. Machine Learning often boils down to minimizing

e The variable to minimize: a parameter which describes the machine.

* The objective: fitting error with respect to data sample + regularization
nis can be interpreted as likelihood + prior of the parameter.
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2. The structure of that minimization is peculiar

* The fitting error is either an integral or a sum.
* The regularization term is usually a simple function.

3. Dimensions are a problem (>2000’s)

 The parameter space is usually very large. Sometimes even the
parameter hardly fits in a single machine (NN).

e The space required to store a single data point might be large.

e If evaluated on a finite sum, the number of points is usually huge.
Data cannot fit on a single machine either.
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Machine Learning as Optimization

1. Machine Learning often boils down to minimizing
e The variable to minimize: a parameter which describes the machine.
* The objective: fitting error with respect to data sample + regularization

- Only tractable computer implementation is to
* randomize and/or to distribute computations.

- This is the topic addressed in these lectures.
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e The space required to store a single data point might be large.

e If evaluated on a finite sum, the number of points is usually huge.
Data cannot fit on a single machine either.
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Self-introduction

e ENSAE ('01) / MVA / Phd. ENSMP / Japan & US

e post-doc then hedge-fund in Japan (C05~’08)
* Lecturer @ Princeton University (‘09~’10)

e Assoc. Prof. @ Kyoto University ('10~’16)

e Prof @ ENSAE since 9/°16.

e Active in ML community, stats/optim tlavor.
« Attend & publish regularly in NIPS & ICML.

* Interests
* Optimal transport, kernel methods, time series.



Practical Aspects

e Reach me:
e Bureau: EO02, entresol.
* email: marco.cuturi@ensae.fr

* page web: http://marcocuturi.net

® [ectures: structure
6 x 2h class.
e 3 x 2h python hands-on sessions, Fabian Pedregosa.
e Last class (intro to text data) Stéphanie Combes.
e Validation through memoir.

* No notes yet. pointers to relevant material:

« 1606.04838v1.pdf
e Taiji Suzuki’s slides: http://bit.ly/taiji slides
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Schedule

1. Introduction

* Link between ML - Optimisation. (R)(E)RM problems
* Convexity, Fenchel duality

Stochastic gradient (SG) method
Incremental gradient methods
Curvature: second order methods for SG

Asynchronous optimization

SR O

Distributed optimization



- Tentative list of ingredients in batch ML

{($17:‘/1)7 SR (xn,yn)} S (X X y)n
samples from p € P(X x V)

loss function [ : Y x Y — R

function class F = {fy: X — V,0 € 0}

regularizer 1 : © — R
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- Tentative list of ingredients in batch ML

{(x1,y1), . (T, yn) Y € (X x V)" A\ =

dim(X) = oo

samples from p € P(X x V)

loss function [ : Y x Y — R

function class F = {fy: X — V,0 € 0}

regularizer ¢ : © — R
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(Goal of Batch ML

1. The elusive golden standard: Risk Minimization

min [£,[1(fo(X),Y)

0cO

2. The naive alternative: Empirical Risk Minimization

mm—zlfe ), 1)

0cOG N




Supervised ML

3. The reasonable compromise

mm—zz foles) w0

0cO N

From an optimization point of view:
e parameter size is huge.
 Joss and regularizer functions might be ugly.

* n points might be too much for a single RAM machine (~256Gb
vs. a few terabytes of more for modern datasets).



Supervised ML

3. The reasonable compromise

mm—Zl fo(wi),ys) +4(6)

0cO N

From an optimization point of view:
e parameter size is huge.
 Joss and regularizer functions might be ugly.

* n points might be too much for a single RAM machine (~256Gb
vs. a few terabytes of more for modern datasets).



Tentative list of ingredients in online ML

(.’Et,yt) c X xy,tZ()

each sampled from p € P(X x ))

loss function [ : Y x Y — R

function class F = {fy: X — V,0 € 0}

regularizer ¢ : © — R
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Online ML

Same risk minimization ideal

min Ep[l(fo(X),Y)

2. Due to practical constraints, samples only come one by
one, each at a time t, and cannot be stored. Only
previous parameter is stored.

0, = F(l(fet_l(wt), yt)v P, 9t—1)

From an optimization point of view:

 size problem is gone.
* refresh speed might be very fast.

 What update rule can we cons%der to guarantee good approx.?




Example: Regression (Regularized)

dim d
A
(IJ
dim n
v

_ i) 2 q
rglgln;(x 0+b—1y;)*+ 0|2



Example: Binary Classitication (inear)

0-1 loss : l(a,b) = 1a2p

J = {f@ O e sign(wa + b),é’ — (wab) S Rp_l_l}

1
_ 1 | 2
I{Ulllrjln Z (fw b(xz)#yz 2Hw||
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Cleaner optimization setup for ML

{z1,...,z2nt € (X x )"

{l@ A X )Y — R_|_}9€@

¢3@%R+

mein % ; lo(z;) + ¢ (0)
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Examples

> b=

Support Vector Machine.
Logistic regression.
Multiclass logistic regression with a KL loss.

Multiclass logistic regression with a Wasserstein loss.
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Reminders on Convexity: Sefs

*Line segment between two points in Hilbert space:

{x =X x1+(1—XNxg, 0 A1}

*A convex set contains all segments of all its points
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Reminders on Convexity: Epigraph

e Epigraphs and domain

Det
epi(f) = {(z,t) e R" x R: f(z) < ¢}
)

dom(f) ={x € R?: f(z) < oo}

epigraph

e .

domain
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Reminders on Convexity: Functions

e Convex function

R =RU{0}

/

Det

f : RP — R convex

0

\V/$1,$2 ERP,OS)\S 1,
fAz1 + (1= ANze) < Af(z1) + (1= A) f(22)
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Reminders on Convexity: Functions

e Convex function

R =RU{}

/

Det

f: RP — Rconvex

0

\V/$1,$2 ERP,OS)\S 1,
fAz1 + (1= ANze) < Af(z1) + (1= A) f(22)

¢ A function is convex iff its epigraph is.
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convex loss functions for regression

e Label is a real number (regression)

| |
(u,y) = 5 (u—y)*, Quadratic

l-(u,y) = (1 — 7)max(u — y,0) + 7 max(y — u,0),7 € [0, 1]
le(u,y) = max(ly —u| —e),e >0 tau-quantile

| —

eps-sensitive

| —

1 2
(y —u for |y — u| <o,
l5(u7y) — 2< ) 1 <9 | : ‘

0|y —u|l — 50 otherwise.

huber
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convex loss functions for regression

| l |
— Squared

----- T-quantile [
Huber
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convex loss functions for classification

e Label is a binary, prediction is a number
logistic
l(u,y) = log(1 + exp(—yu)), I
I(u,y) = |1 — yuly = max(1 - yu,0),  hinge
[(u,y) = exp(—yu), exponential

| —

0, yu > 1,

l(u,y) =9 5 — yu, yu < 0, smoothed hinge
2(1 —yu)?, otherwise. S
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convex loss functions for regression

—0-1
4 \\ ——Logistic
\\\ ----- Hinge
\\\ exp
3 \\\ ---------- Smoothed-hinge_
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convex regularizers

b(0) = ||6]3 = "0, e
0@ =16l =10, L

V(0) = al|0||, + b]|0]]5, elastic net

() =10l = D o;(6)

trace norm (for matrices)

——— ————
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convex loss functions for regression
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