
Distributed and Stochastic
Optimization for

Machine Learning

Marco Cuturi

Machine Learning as Optimization

2

1. Machine Learning often boils down to minimizing
• The variable to minimize: a parameter which describes the machine.
• The objective: fitting error with respect to data sample + regularization
• This can be interpreted as likelihood + prior of the parameter. 

2. The structure of that minimization is peculiar
• The fitting error is either an integral or a sum.
• The regularization term is usually a simple function.

3. Dimensions are a problem (>2000’s)
• The parameter space is usually very large. Sometimes even the

parameter hardly fits in a single machine (NN).
• The space required to store a single data point might be large.
• If evaluated on a finite sum, the number of points is usually huge.

Data cannot fit on a single machine either.

Machine Learning as Optimization

2

1. Machine Learning often boils down to minimizing
• The variable to minimize: a parameter which describes the machine.
• The objective: fitting error with respect to data sample + regularization
• This can be interpreted as likelihood + prior of the parameter. 

2. The structure of that minimization is peculiar
• The fitting error is either an integral or a sum.
• The regularization term is usually a simple function.

3. Dimensions are a problem (>2000’s)
• The parameter space is usually very large. Sometimes even the

parameter hardly fits in a single machine (NN).
• The space required to store a single data point might be large.
• If evaluated on a finite sum, the number of points is usually huge.

Data cannot fit on a single machine either.

Only tractable computer implementation is to
randomize and/or to distribute computations.
This is the topic addressed in these lectures.

Self-introduction

•ENSAE (’01) / MVA / Phd. ENSMP / Japan & US
• post-doc then hedge-fund in Japan (’05~’08)
• Lecturer @ Princeton University (‘09~’10)
• Assoc. Prof. @ Kyoto University (’10~’16)
• Prof @ ENSAE since 9/’16.

•Active in ML community, stats/optim flavor.
• Attend & publish regularly in NIPS & ICML.

•Interests
• Optimal transport, kernel methods, time series.

3

Practical Aspects

• Reach me:
• Bureau: E02, entresol.
• email: marco.cuturi@ensae.fr
• page web: http://marcocuturi.net

• Lectures: structure
• 6 x 2h class.
• 3 x 2h python hands-on sessions, Fabian Pedregosa.
• Last class (intro to text data) Stéphanie Combes.
• Validation through memoir.

• No notes yet. pointers to relevant material:
• 1606.04838v1.pdf
• Taiji Suzuki’s slides: http://bit.ly/taiji_slides

4

mailto:marco.cuturi@ensae.fr
http://bit.ly/taiji_slides

Schedule

1. Introduction
• Link between ML - Optimisation. (R)(E)RM problems
• Convexity, Fenchel duality

2. Stochastic gradient (SG) method

3. Incremental gradient methods

4. Curvature: second order methods for SG

5. Asynchronous optimization

6. Distributed optimization

5

samples from p 2 P(X ⇥ Y)

Tentative list of ingredients in batch ML

6

{(x1, y1), . . . , (xn, yn)} 2 (X ⇥ Y)n

loss function l : Y ⇥ Y ! R+

regularizer : ⇥ ! R+

function class F = {f✓ : X ! Y, ✓ 2 ⇥}

samples from p 2 P(X ⇥ Y)

Tentative list of ingredients in batch ML

6

{(x1, y1), . . . , (xn, yn)} 2 (X ⇥ Y)n

loss function l : Y ⇥ Y ! R+

regularizer : ⇥ ! R+

n ⇡ 1
dim(X) ⇡ 1

function class F = {f✓ : X ! Y, ✓ 2 ⇥}

Goal of Batch ML

7

1. The elusive golden standard: Risk Minimization 
 
 
 

2. The naive alternative: Empirical Risk Minimization 
 
 
 
 

min
✓2⇥

Ep[l(f✓(X), Y)]

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi)

Supervised ML

8

3. The reasonable compromise

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi)

From an optimization point of view:
• parameter size is huge.
• loss and regularizer functions might be ugly.
• n points might be too much for a single RAM machine (~256Gb

vs. a few terabytes of more for modern datasets).

Supervised ML

8

3. The reasonable compromise

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi) + (✓)

From an optimization point of view:
• parameter size is huge.
• loss and regularizer functions might be ugly.
• n points might be too much for a single RAM machine (~256Gb

vs. a few terabytes of more for modern datasets).

Tentative list of ingredients in online ML

9

loss function l : Y ⇥ Y ! R+

regularizer : ⇥ ! R+

function class F = {f✓ : X ! Y, ✓ 2 ⇥}

(xt, yt) 2 X ⇥ Y, t � 0.

each sampled from p 2 P(X ⇥ Y)

Online ML

10

1. Same risk minimization ideal 
 
 
 

2. Due to practical constraints, samples only come one by
one, each at a time t, and cannot be stored. Only
previous parameter is stored.

min
✓2⇥

Ep[l(f✓(X), Y)]

✓t = F (l(f✓t�1
(xt), yt), ,✓t�1)

From an optimization point of view:
• size problem is gone.
• refresh speed might be very fast.
• What update rule can we consider to guarantee good approx.?

Example: Regression (Regularized)

11

dim n

dim d

yj(xj)
T

✓
vs.

min
✓,b

1

n

nX

j=1

(xT
j ✓ + b� yj)

2 + �k✓kq
q

Example: Binary Classification (linear)

12

{(x1, y1), . . . , (xn, yn)} 2 (Rp ⇥ {�1, 1})n

0-1 loss : l(a, b) = 1a 6=b

F = {f✓ : x 7! sign(wT
x+ b), ✓ = (!, b) 2 Rp+1}

 (!, b) =
1

2
kwk2

min
w,b

1

n

nX

i=1

1(fw,b(xi) 6=yi) +
1

2
kwk2

Cleaner optimization setup for ML

13

{z1, . . . , zn} 2 (X ⇥ Y)n

{l✓ : X ⇥ Y ! R+}✓2⇥

 : ⇥ ! R+

min
✓

1

n

nX

i=1

l✓(zi) + (✓)

Examples

14

1. Support Vector Machine.

2. Logistic regression.

3. Multiclass logistic regression with a KL loss.

4. Multiclass logistic regression with a Wasserstein loss.  
 
 
 

Reminders on Convexity: Sets

15

•Line segment between two points in Hilbert space:

!
!

•A convex set contains all segments of all its points

!

!

•Examples

Reminders: Convex set

line segment between x1 and x2: all points

{x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}

convex set: contains line segment between any two points in the set

C is convex ⇔ ∀x1, x2 ∈ C, 0 ≤ λ ≤ 1; λx1 + (1− λ)x2 ∈ C

examples (one convex, two nonconvex sets)

CO&ML 17

Reminders: Convex set

line segment between x1 and x2: all points

{x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}

convex set: contains line segment between any two points in the set

C is convex ⇔ ∀x1, x2 ∈ C, 0 ≤ λ ≤ 1; λx1 + (1− λ)x2 ∈ C

examples (one convex, two nonconvex sets)

CO&ML 17

Reminders: Convex set

line segment between x1 and x2: all points

{x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}

convex set: contains line segment between any two points in the set

C is convex ⇔ ∀x1, x2 ∈ C, 0 ≤ λ ≤ 1; λx1 + (1− λ)x2 ∈ C

examples (one convex, two nonconvex sets)

CO&ML 17

Def

Reminders on Convexity: Epigraph

16

•Epigraphs and domain

Def

epi(f) = {(x, t) 2 Rp ⇥ R : f(x) t}
dom(f) = {x 2 Rp

: f(x) < 1}

Epigraph and domain
Let R̄ := R ∪ {∞}.

Definition (Epigraph and domain)

The epigraph of a function f : Rp → R̄ is given by

epi(f) := {(x , µ) ∈ Rp+1 : f (x) ≤ µ}.

The domain of a function f : Rp → R̄ is given by

dom(f) := {x ∈ Rp : f (x) < ∞}.

epigraph

domain(]
18 / 73

Reminders on Convexity: Functions

17

• Convex function
Def

f : Rp ! ¯R convex

m
8x1, x2 2 Rp

, 0 � 1,

f(�x1 + (1� �)x2) �f(x1) + (1� �)f(x2)

R̄ = R [{1}

Reminders on Convexity: Functions

17

• Convex function
Def

f : Rp ! ¯R convex

m
8x1, x2 2 Rp

, 0 � 1,

f(�x1 + (1� �)x2) �f(x1) + (1� �)f(x2)

R̄ = R [{1}

• A function is convex iff its epigraph is.

convex loss functions for regression
• Label is a real number (regression) 
 
 
 
 
 

18

l(u, y) =
1

2

(u� y)2,

l⌧ (u, y) = (1� ⌧)max(u� y, 0) + ⌧ max(y � u, 0), ⌧ 2 [0, 1]

l"(u, y) = max(|y � u|� "), " > 0

quadratic

tau-quantile

eps-sensitive

u

l�(u, y) =

(
1
2 (y � u)2 for |y � u| �,

� |y � u|� 1
2�

2
otherwise.

huber

19

Convex loss functions (regression)

All well used loss functions are (closed) convex. The followings are convex
w.r.t. u with a fixed label y ∈ R.

Squared loss: ℓ(y , u) = 1
2(y − u)2.

τ -quantile loss: ℓ(y , u) = (1− τ)max{u − y , 0}+ τ max{y − u, 0}.
for some τ ∈ (0, 1). Used for quantile regression.
ϵ-sensitive loss: ℓ(y , u) = max{|y − u|− ϵ, 0} for some ϵ > 0. Used
for support vector regression.

 f-y
-3 -2 -1 0 1 2 3
0

1

2

3 τ-quantile

-sensitive

Squared

Huber

21 / 73

u

convex loss functions for regression

• Label is a binary, prediction is a number 
 
 
 
 
 

20

logistic

u

convex loss functions for classification

l(u, y) = log(1 + exp(�yu)),

l(u, y) = |1� yu|+ = max(1� yu, 0),

l(u, y) = exp(�yu),

l(u, y) =

8
><

>:

0, yu � 1,
1
2 � yu, yu < 0,
1
2 (1� yu)2, otherwise.

hinge
exponential

smoothed hinge

21

convex loss functions for regression

Convex surrogate loss (classification)

y ∈ {±1}
Logistic loss: ℓ(y , u) = log((1 + exp(−yu))/2).
Hinge loss: ℓ(y , u) = max{1− yu, 0}.
Exponential loss: ℓ(y , u) = exp(−yu).
Smoothed hinge loss:

ℓ(y , u) =

⎧
⎪⎨

⎪⎩

0, (yu ≥ 1),
1
2 − yu, (yu < 0),
1
2(1− yu)2, (otherwise).

 yf
-3 -2 -1 0 1 2 3
0

1

2

3

4
0-1
Logistic

exp
Hinge

Smoothed-hinge

22 / 73u

22

convex regularizers

 (✓) = k✓k22 = ✓T ✓,

 (✓) = k✓k1 =
X

i

|✓i|,

 (✓) = ak✓k1 + bk✓k22,

 (✓) = k✓ktr =
min(q,r)X

i

�j(✓)

ridge

L-1

elastic net

trace norm (for matrices)

23

convex loss functions for regression

Convex regularization functions

Ridge regularization: R(x) = ∥x∥22 :=
∑p

j=1 x
2
j .

L1 regularization: R(x) = ∥x∥1 :=
∑p

j=1 |xj |.

Trace norm regularization: R(X) = ∥X∥tr =
∑min{q,r}

k=1 σj(X)
where σj(X) ≥ 0 is the j-th singular value.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Bridge (=0.5)
L1
Ridge
Elasticnet

1
n

∑n
i=1(yi − z⊤i x)2 + λ∥x∥1: Lasso

1
n

∑n
i=1 log(1 + exp(−yiz⊤i x)) + λ∥X∥tr: Low rank matrix recovery

23 / 73

