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Machine Learning as Optimization
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1. Machine Learning often boils down to minimizing 
• The variable to minimize: a parameter which describes the machine. 
• The objective: fitting error with respect to data sample + regularization 
• This can be interpreted as likelihood + prior of the parameter. 

2. The structure of that minimization is peculiar 
• The fitting error is either an integral or a sum.  
• The regularization term is usually a simple function. 

3. Dimensions are a problem (>2000’s) 
• The parameter space is usually very large. Sometimes even the 

parameter hardly fits in a single machine (NN). 
• The space required to store a single data point might be large. 
• If evaluated on a finite sum, the number of points is usually huge. 

Data cannot fit on a single machine either.
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• The fitting error is either an integral or a sum.  
• The regularization term is usually a simple function. 

3. Dimensions are a problem (>2000’s) 
• The parameter space is usually very large. Sometimes even the 

parameter hardly fits in a single machine (NN). 
• The space required to store a single data point might be large. 
• If evaluated on a finite sum, the number of points is usually huge. 

Data cannot fit on a single machine either.

Only tractable computer implementation is to 
randomize and/or to distribute computations. 
This is the topic addressed in these lectures.



Self-introduction

•ENSAE (’01) / MVA / Phd. ENSMP / Japan & US 
• post-doc then hedge-fund in Japan (’05~’08) 
• Lecturer @ Princeton University (‘09~’10) 
• Assoc. Prof. @ Kyoto University (’10~’16) 
• Prof @ ENSAE since 9/’16. 

•Active in ML community, stats/optim flavor. 
• Attend & publish regularly in NIPS & ICML. 

•Interests 
• Optimal transport, kernel methods, time series.
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Practical Aspects

• Reach me: 
• Bureau: E02, entresol. 
• email: marco.cuturi@ensae.fr  
• page web: http://marcocuturi.net 

• Lectures: structure 
• 6 x 2h class. 
• 3 x 2h python hands-on sessions, Fabian Pedregosa. 
• Last class (intro to text data) Stéphanie Combes. 
• Validation through memoir. 

• No notes yet. pointers to relevant material: 
• 1606.04838v1.pdf   
• Taiji Suzuki’s slides: http://bit.ly/taiji_slides
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Schedule

1. Introduction 
• Link between ML - Optimisation. (R)(E)RM problems 
• Convexity, Fenchel duality 

2. Stochastic gradient (SG) method 

3. Incremental gradient methods 

4. Curvature: second order methods for SG 

5. Asynchronous optimization 

6. Distributed optimization
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samples from p 2 P(X ⇥ Y)

Tentative list of ingredients in batch ML
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{(x1, y1), . . . , (xn, yn)} 2 (X ⇥ Y)n

loss function l : Y ⇥ Y ! R+

regularizer  : ⇥ ! R+

function class F = {f✓ : X ! Y, ✓ 2 ⇥}
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{(x1, y1), . . . , (xn, yn)} 2 (X ⇥ Y)n

loss function l : Y ⇥ Y ! R+

regularizer  : ⇥ ! R+

n ⇡ 1
dim(X ) ⇡ 1

function class F = {f✓ : X ! Y, ✓ 2 ⇥}



Goal of Batch ML
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1. The elusive golden standard: Risk Minimization 
 
 
 

2. The naive alternative: Empirical Risk Minimization 
 
 
 
 

min
✓2⇥

Ep[l(f✓(X), Y )]

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi)



Supervised ML
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3. The reasonable compromise

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi)

From an optimization point of view: 
• parameter size is huge. 
• loss and regularizer functions might be ugly. 
• n points might be too much for a single RAM machine (~256Gb 

vs. a few terabytes of more for modern datasets).
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min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi) + (✓)

From an optimization point of view: 
• parameter size is huge. 
• loss and regularizer functions might be ugly. 
• n points might be too much for a single RAM machine (~256Gb 
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Tentative list of ingredients in online ML
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loss function l : Y ⇥ Y ! R+

regularizer  : ⇥ ! R+

function class F = {f✓ : X ! Y, ✓ 2 ⇥}

(xt, yt) 2 X ⇥ Y, t � 0.

each sampled from p 2 P(X ⇥ Y)



Online ML
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1. Same risk minimization ideal 
 
 
 

2. Due to practical constraints, samples only come one by 
one, each at a time t, and cannot be stored. Only 
previous parameter is stored.

min
✓2⇥

Ep[l(f✓(X), Y )]

✓t = F (l(f✓t�1
(xt), yt), ,✓t�1)

From an optimization point of view: 
• size problem is gone. 
• refresh speed might be very fast.  
• What update rule can we consider to guarantee good approx.?



Example: Regression (Regularized)
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dim n

dim d

yj(xj)
T

✓
vs.

min
✓,b

1

n

nX

j=1

(xT
j ✓ + b� yj)

2 + �k✓kq
q



Example: Binary Classification (linear)
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{(x1, y1), . . . , (xn, yn)} 2 (Rp ⇥ {�1, 1})n

0-1 loss : l(a, b) = 1a 6=b

F = {f✓ : x 7! sign(wT
x+ b), ✓ = (!, b) 2 Rp+1}

 (!, b) =
1

2
kwk2

min
w,b

1

n

nX

i=1

1(fw,b(xi) 6=yi) +
1

2
kwk2



Cleaner optimization setup for ML
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{z1, . . . , zn} 2 (X ⇥ Y)n

{l✓ : X ⇥ Y ! R+}✓2⇥

 : ⇥ ! R+

min
✓

1

n

nX

i=1

l✓(zi) +  (✓)



Examples
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1. Support Vector Machine. 

2. Logistic regression. 

3. Multiclass logistic regression with a KL loss. 

4. Multiclass logistic regression with a Wasserstein loss.  
 
 
 



Reminders on Convexity: Sets
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•Line segment between two points in Hilbert space: 

!
!

•A convex set contains all segments of all its points 

!

!

•Examples

Reminders: Convex set

line segment between x1 and x2: all points

{x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}

convex set: contains line segment between any two points in the set

C is convex ⇔ ∀x1, x2 ∈ C, 0 ≤ λ ≤ 1; λx1 + (1− λ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Def



Reminders on Convexity: Epigraph
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•Epigraphs and domain 

Def

epi(f) = {(x, t) 2 Rp ⇥ R : f(x)  t}
dom(f) = {x 2 Rp

: f(x) < 1}

Epigraph and domain
Let R̄ := R ∪ {∞}.

Definition (Epigraph and domain)

The epigraph of a function f : Rp → R̄ is given by

epi(f ) := {(x , µ) ∈ Rp+1 : f (x) ≤ µ}.

The domain of a function f : Rp → R̄ is given by

dom(f ) := {x ∈ Rp : f (x) < ∞}.

epigraph

domain( ]
18 / 73



Reminders on Convexity: Functions
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• Convex function
Def

f : Rp ! ¯R convex

m
8x1, x2 2 Rp

, 0  �  1,

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2)

R̄ = R [ {1}
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• Convex function
Def

f : Rp ! ¯R convex

m
8x1, x2 2 Rp

, 0  �  1,

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2)

R̄ = R [ {1}

• A function is convex iff its epigraph is.



convex loss functions for regression
• Label is a real number (regression) 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l(u, y) =
1

2

(u� y)2,

l⌧ (u, y) = (1� ⌧)max(u� y, 0) + ⌧ max(y � u, 0), ⌧ 2 [0, 1]

l"(u, y) = max(|y � u|� "), " > 0

quadratic

tau-quantile

eps-sensitive

u

l�(u, y) =

(
1
2 (y � u)2 for |y � u|  �,

� |y � u|� 1
2�

2
otherwise.

huber
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Convex loss functions (regression)

All well used loss functions are (closed) convex. The followings are convex
w.r.t. u with a fixed label y ∈ R.

Squared loss: ℓ(y , u) = 1
2(y − u)2.

τ -quantile loss: ℓ(y , u) = (1− τ)max{u − y , 0}+ τ max{y − u, 0}.
for some τ ∈ (0, 1). Used for quantile regression.
ϵ-sensitive loss: ℓ(y , u) = max{|y − u|− ϵ, 0} for some ϵ > 0. Used
for support vector regression.

 f-y
-3 -2 -1 0 1 2 3
0

1

2

3 τ-quantile

-sensitive

Squared

Huber
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convex loss functions for regression



• Label is a binary, prediction is a number 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logistic

u

convex loss functions for classification

l(u, y) = log(1 + exp(�yu)),

l(u, y) = |1� yu|+ = max(1� yu, 0),

l(u, y) = exp(�yu),

l(u, y) =

8
><

>:

0, yu � 1,
1
2 � yu, yu < 0,
1
2 (1� yu)2, otherwise.

hinge
exponential

smoothed hinge
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convex loss functions for regression

Convex surrogate loss (classification)

y ∈ {±1}
Logistic loss: ℓ(y , u) = log((1 + exp(−yu))/2).
Hinge loss: ℓ(y , u) = max{1− yu, 0}.
Exponential loss: ℓ(y , u) = exp(−yu).
Smoothed hinge loss:

ℓ(y , u) =

⎧
⎪⎨

⎪⎩

0, (yu ≥ 1),
1
2 − yu, (yu < 0),
1
2(1− yu)2, (otherwise).

 yf
-3 -2 -1 0 1 2 3
0

1

2

3

4
0-1
Logistic

exp
Hinge

Smoothed-hinge
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convex regularizers

 (✓) = k✓k22 = ✓T ✓,

 (✓) = k✓k1 =
X

i

|✓i|,

 (✓) = ak✓k1 + bk✓k22,

 (✓) = k✓ktr =
min(q,r)X

i

�j(✓)

ridge

L-1

elastic net

trace norm (for matrices)
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convex loss functions for regression

Convex regularization functions

Ridge regularization: R(x) = ∥x∥22 :=
∑p

j=1 x
2
j .

L1 regularization: R(x) = ∥x∥1 :=
∑p

j=1 |xj |.

Trace norm regularization: R(X ) = ∥X∥tr =
∑min{q,r}

k=1 σj(X )
where σj(X ) ≥ 0 is the j-th singular value.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Bridge (=0.5)
L1
Ridge
Elasticnet

1
n

∑n
i=1(yi − z⊤i x)2 + λ∥x∥1: Lasso

1
n

∑n
i=1 log(1 + exp(−yiz⊤i x)) + λ∥X∥tr: Low rank matrix recovery
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