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Summary

• Objectives of these lectures:

◦ Familiarize yourself with the general concept of classification
◦ Learn how to classify complex biological structures with a SVM

• Outline of this short course:

1. Introduce linear classifiers in general...
2. ...the support vector machine in particular...
3. ...and its extension as a kernel algorithm.
4. we conclude by presenting a few kernels for biological structures.

to go beyond these lectures: a few pointers at the end of this document
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The starting point: data

• The data-revolution: more data, new datatypes, new databases

◦ All hard-drives of the planet (2009) ≈ 487 billion Gb ≈ 72Gb/person!
◦ In 1993, internet traffic = 100 Tb/year. In 2008, 160 Tb/second

• Some of that data is scientifically relevant...

◦ The LHC particle accelerator will produce 15 Mil Gb per year
◦ Bioinformatics databases: see lectures by Michael Gromiha (CBRC)

• Key question: can we use this data to make scientific discoveries? how?

Statistical inference: learn from previously seen data
to make decisions about new data.
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Statistical Inference

• Statistical: useful to study random systems...

◦ Mutations, environmental changes etc.→ life is random!

• Inference: learn rules using observations assuming some “stationarity”.

“yes/no” rules = “binary classification”

◦ given a protein sequence, does it belong to the functional class ABC?
◦ given a patient’s genome, is it safe/effective to give him medecine XYZ?
◦ given a patient’s genome, is (s)he at risk of developing Parkinson’s disease?
◦ given gene expression data of a tumor cell, is it benign/malign?

“binary classification”⇒ simple predictions for well-understood problems
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Statistical Inference

We will not discuss...

• Multiclass classification: provide one among many (≥ 3) possible answers;

• Clustering : create the taxonomy (classes) and the answers at the same time;

• Regression: provide real-valued answers (in R or R
d);

• Structured Output Regression: the answer is a whole new object (e.g.predict a
whole 3D structure)

... but it useful to understand binary classification
to understand the problems above.
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Statistical Inference on Biological Datatypes

• What do we have in bioinformatics databases?

◦ very long sequences (proteins, DNA)
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Statistical Inference on Biological Datatypes

◦ very complex 3D structures (protein folds, molecules)
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Statistical Inference on Biological Datatypes

◦ high-definition images corrupted by noise (DNA-chips)

...etc.
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Yet.... Vectors??

• Yet... the natural datatype for algorithms is vectors, e.g. Matlab.

x =









x1

x2
...

xd









∈ R
d.

◦ easy to store in memory, easy to manipulate (+,-,x,/),
◦ well understood in mathematics (Rd),
◦ probability theory and statistics (multivariate analysis).

• We will first study classification algorithms tailored for vectors.

• You might say: But biological data is never formatted as a vector in real-life!
...why study vector-based algorithms?

Kernels are the trojan-horses which will help us
deal with complex structures using algorithms tailored for vectors [11]
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The training set

• The Data we have: a bunch of vectors x1, x2, x3, · · · , xN .

• Ideally, to infer a “yes/no” rule, we need the correct answer for each vector.

• We consider thus a set of pairs of variables

“training set” =























xi =









xi
1

xi
2
...

xi
d









∈ R
d, yi ∈ {0, 1}









i=1..N















• For illustration purposes only we will consider vectors in the plane, d = 2.

• Points are easier to represent in 2 dimensions than in 20.000...

• The ideas for d ≫ 3 are exactly the same.

Many thanks to J.P. Vert for some of the following slides
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Classification Separation Surfaces for Vectors

What is a classification rule?
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Classification Separation Surfaces for Vectors

Classification rule = separation surface. A surface in 2D is a line. A loop here
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Classification Separation Surfaces for Vectors

A curved line
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Classification Separation Surfaces for Vectors

Even more simple,
consider straight lines?
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Linear Classifiers

• Straight lines (hyperplanes when d > 2) are a very powerful tool.

• A hyperplane Hc,b is a set in R
d defined by

◦ a normal vector c ∈ R
d

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across R
d

c

Hc,0

Hc,b0
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Linear Classifiers

• Exactly like lines in the plane, hypersurfaces divide R
d into two halfspaces,

{

x ∈ R
d | cTx< b

}

∪
{

x ∈ R
d | cTx≥ b

}

= R
d

• Linear classifiers attribute the “yes” and “no” answers given arbitrary c and b.

NO

YES

Hc,b

c

• Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c⋆, b⋆) given a training sample?
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Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. Depends on the meaning of “best” [4]:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• etc.

Today’s focus: the Support vector machine [10]
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Classification Separation Surfaces for Vectors
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Classification Separation Surfaces for Vectors
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Classification Separation Surfaces for Vectors
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Which one is better?
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A criterion to select a linear classifier: the margin [1]
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A criterion to select a linear classifier: the margin [1]
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A criterion to select a linear classifier: the margin [1]
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A criterion to select a linear classifier: the margin [1]
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A criterion to select a linear classifier: the margin [1]
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Largest Margin Linear Classifier [1]

ABREN 4th Virtual Workshop 31



Support Vectors with Large Margin
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In equations

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .

• Next, we give a formula to compute the margin as a function of w.
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx + b,
consider the interstice defined by the hyperplanes:

• f(x) = wTx + b = +1

• f(x) = wTx + b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

• Consider x1 and x2 such that x2 − x1 is parallel to w.
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The margin is 2/||w||

• Margin = 2/‖w‖: the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ
def
= 2||x2 − x1|| =

2

||w||.

where γ is by definition the margin.
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All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(

wTxi + b
)

≥ 1
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Finding the optimal hyperplane

• Find (w, b) which minimize:
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

.
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The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

}

is only defined when

w =
n

∑

i=1

αiyixi, ( derivating w.r.t w) (∗)

0 =

n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.

• Strong duality holds. KKT gives us αi(yi

(

wTxi + b
)

− 1) = 0,
...hence, either αi = 0 or yi

(

wTxi + b
)

= 1.

• αi 6= 0 only for points on the support hyperplanes {(x, y)| yi(w
Txi + b) = 1}.

ABREN 4th Virtual Workshop 39



Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1 αi − 1
2

∑n

i,j=1 αiαjyiyjx
T
i xj

such that α � 0,
∑n

i=1 αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α∗ can be computed using optimization software
(e.g. built-in matlab function)
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Recovering the optimal hyperplane

• With α∗, we recover (wT , b∗) corresponding to the optimal hyperplane.

• wT is given by wT =
∑n

i=1 yiαix
T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1

2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx + b∗

=

n
∑

i=1

yiαix
T
i x + b∗.

• Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors

α>0

α=0
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM [2]

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{

1

margin(f)
+ C × errors(f)

}

• C is a parameter
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Soft-margin SVM formulation [2]

• The margin of a labeled point (x, y) is

margin(x, y) = y
(

wTx + b
)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1 − margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b

{‖w‖2 + C
n

∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

• c(u, y) = max{0, 1 − yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.
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Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b

{‖w‖2 + C
n

∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1 ξi

such that yi

(

wTxi + b
)

≥ 1 − ξi

• In that case the dual function

g(α) =
n

∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1 αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=
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Sometimes linear classifiers are of little use
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Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let φ(x) = (x2
1, x

2
2)

′, w = (1, 1)′ and b = 1. Then the decision function is:

f(x) = x2
1 + x2

2 − R2 = 〈w, φ(x) 〉 + b,
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Kernel trick for SVM’s [2]

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1

x2

])

=

[

x2
1

x2
2

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′

1)
2 + (x2)

2(x′
2)

2.
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Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1 αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉 + b∗

=
n

∑

i=1

yiαik(xi, x) + b∗.
(1)
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The Kernel Trick [10]

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1
2α

T (yTKy)α
such that 0 ≤ αi ≤ C, for i = 1, . . . , n

∑n

i=1 αiyi = 0.

• K’s positive definiten ⇔ problem has an optimum

• the decision function is f(·) =
∑n

i=1 αi k(xi, ·) + b.
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Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√

2x1x2, x
2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2

• Many more:
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Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models
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Some kernels for biological structures
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Kernels for Sequences

Sequences in Biological Sequences

• DNA sequences: 3 billion bases (ATGC) long sequence.

• Protein sequences: variable-length word of a 20-letter alphabet

Challenges to define a good sequence kernel

• positive-definiteness

• small computational effort required to compute k(xi, xj)
...for N points we have to compute N2 similarities...

• ability to handle variable-length data.
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Kernels for Sequences

• Existing tools:

◦ Sequence alignments: BLAST, Smith-Waterman

◦ Estimate statistical models for each class, e.g. Hidden Markov Models

• Problem... no positive definiteness.

ABREN 4th Virtual Workshop 60



Kernels for Sequences

Finite set of features

• Represent strings as histograms of subsequences (spectrum [7], weighted
degree [12])

• Use possible mismatches in these representations to account for mutations
[8, 6]

Infinite and advanced features

• Use probabilistic models to generate features pθ(s) where θ is a parameter,

k(s, s′) =

∫

θ∈Θ

pθ(s)pθ(s
′)ω(dθ). [3]

• Use feature representations that translate into sums over all possible
alignments [13]
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Kernels for Graphs

• Molecules, protein folds

• Protein interaction networks

• Metabolic pathways

• Sequences can also be seen as linear graphs.

• How to compare them?
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Kernels for Graphs

• Natural idea: decompose graphs into sub-graphs...

• ... and use histograms of sub-graphs?

• Problem: this approach is not feasible because it is not tractable.

• Combinatorial limits: Computing these histograms is a NP-hard problem.
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Kernels for Graphs

• Instead, previous contributions [5, 9, 14] have considered walks in the graph

etc...

• Graph → {set of walks} → {sequences (of vertex labels, edge labels etc.)}.
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Kernels for Graphs

• Idea: Use these large sets of sequences to compare two graphs:

• First, for any arbitrary subsequence s, count how many times it appears in any
walk w of a graph G, weighted by a weight on the walk λ(w).

φs(G) =
∑

w walk in G

λ(w)1(s in w)

• Compare two graphs by taking the dot-product of φ’s:

k(G, G′) =
∑

all sequences s in S

φs(G)φs(G
′)

For some settings ( λ, S, restricted walks)
k can be computed in polynomial time,

without having to compute the φ vectors.
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Kernels for Graphs
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