
4th Virtual Training Workshop in Bioinformatics

Classification in Bioinformatics:

the SVM & Kernels

mcuturi@i.kyoto-u.ac.jp

ABREN 4th Virtual Workshop 1

Summary

• Objectives of these lectures:

◦ Familiarize yourself with the general concept of classification
◦ Learn how to classify complex biological structures with a SVM

• Outline of this short course:

1. Introduce linear classifiers in general...
2. ...the support vector machine in particular...
3. ...and its extension as a kernel algorithm.
4. we conclude by presenting a few kernels for biological structures.

to go beyond these lectures: a few pointers at the end of this document

ABREN 4th Virtual Workshop 2

The starting point: data

• The data-revolution: more data, new datatypes, new databases

◦ All hard-drives of the planet (2009) ≈ 487 billion Gb ≈ 72Gb/person!
◦ In 1993, internet traffic = 100 Tb/year. In 2008, 160 Tb/second

• Some of that data is scientifically relevant...

◦ The LHC particle accelerator will produce 15 Mil Gb per year
◦ Bioinformatics databases: see lectures by Michael Gromiha (CBRC)

• Key question: can we use this data to make scientific discoveries? how?

Statistical inference: learn from previously seen data
to make decisions about new data.

ABREN 4th Virtual Workshop 3

Statistical Inference

• Statistical: useful to study random systems...

◦ Mutations, environmental changes etc.→ life is random!

• Inference: learn rules using observations assuming some “stationarity”.

“yes/no” rules = “binary classification”

◦ given a protein sequence, does it belong to the functional class ABC?
◦ given a patient’s genome, is it safe/effective to give him medecine XYZ?
◦ given a patient’s genome, is (s)he at risk of developing Parkinson’s disease?
◦ given gene expression data of a tumor cell, is it benign/malign?

“binary classification”⇒ simple predictions for well-understood problems

ABREN 4th Virtual Workshop 4

Statistical Inference

We will not discuss...

• Multiclass classification: provide one among many (≥ 3) possible answers;

• Clustering : create the taxonomy (classes) and the answers at the same time;

• Regression: provide real-valued answers (in R or R
d);

• Structured Output Regression: the answer is a whole new object (e.g.predict a
whole 3D structure)

... but it useful to understand binary classification
to understand the problems above.

ABREN 4th Virtual Workshop 5

Statistical Inference on Biological Datatypes

• What do we have in bioinformatics databases?

◦ very long sequences (proteins, DNA)

ABREN 4th Virtual Workshop 6

Statistical Inference on Biological Datatypes

◦ very complex 3D structures (protein folds, molecules)

ABREN 4th Virtual Workshop 7

Statistical Inference on Biological Datatypes

◦ high-definition images corrupted by noise (DNA-chips)

...etc.

ABREN 4th Virtual Workshop 8

Yet.... Vectors??

• Yet... the natural datatype for algorithms is vectors, e.g. Matlab.

x =

x1

x2
...

xd

∈ R
d.

◦ easy to store in memory, easy to manipulate (+,-,x,/),
◦ well understood in mathematics (Rd),
◦ probability theory and statistics (multivariate analysis).

• We will first study classification algorithms tailored for vectors.

• You might say: But biological data is never formatted as a vector in real-life!
...why study vector-based algorithms?

Kernels are the trojan-horses which will help us
deal with complex structures using algorithms tailored for vectors [11]

ABREN 4th Virtual Workshop 9

The training set

• The Data we have: a bunch of vectors x1, x2, x3, · · · , xN .

• Ideally, to infer a “yes/no” rule, we need the correct answer for each vector.

• We consider thus a set of pairs of variables

“training set” =

xi =

xi
1

xi
2
...

xi
d

∈ R
d, yi ∈ {0, 1}

i=1..N

• For illustration purposes only we will consider vectors in the plane, d = 2.

• Points are easier to represent in 2 dimensions than in 20.000...

• The ideas for d ≫ 3 are exactly the same.

Many thanks to J.P. Vert for some of the following slides

ABREN 4th Virtual Workshop 10

Classification Separation Surfaces for Vectors

What is a classification rule?

ABREN 4th Virtual Workshop 11

Classification Separation Surfaces for Vectors

Classification rule = separation surface. A surface in 2D is a line. A loop here

ABREN 4th Virtual Workshop 12

Classification Separation Surfaces for Vectors

A curved line

ABREN 4th Virtual Workshop 13

Classification Separation Surfaces for Vectors

Even more simple,
consider straight lines?

ABREN 4th Virtual Workshop 14

Linear Classifiers

• Straight lines (hyperplanes when d > 2) are a very powerful tool.

• A hyperplane Hc,b is a set in R
d defined by

◦ a normal vector c ∈ R
d

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across R
d

c

Hc,0

Hc,b0

ABREN 4th Virtual Workshop 15

Linear Classifiers

• Exactly like lines in the plane, hypersurfaces divide R
d into two halfspaces,

{

x ∈ R
d | cTx< b

}

∪
{

x ∈ R
d | cTx≥ b

}

= R
d

• Linear classifiers attribute the “yes” and “no” answers given arbitrary c and b.

NO

YES

Hc,b

c

• Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c⋆, b⋆) given a training sample?

ABREN 4th Virtual Workshop 16

Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. Depends on the meaning of “best” [4]:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• etc.

Today’s focus: the Support vector machine [10]

ABREN 4th Virtual Workshop 17

Classification Separation Surfaces for Vectors

ABREN 4th Virtual Workshop 18

Classification Separation Surfaces for Vectors

ABREN 4th Virtual Workshop 19

Classification Separation Surfaces for Vectors

ABREN 4th Virtual Workshop 20

Linear classifier, some degrees of freedom

ABREN 4th Virtual Workshop 21

Linear classifier, some degrees of freedom

ABREN 4th Virtual Workshop 22

Linear classifier, some degrees of freedom

ABREN 4th Virtual Workshop 23

Linear classifier, some degrees of freedom

ABREN 4th Virtual Workshop 24

Which one is better?

ABREN 4th Virtual Workshop 25

A criterion to select a linear classifier: the margin [1]

ABREN 4th Virtual Workshop 26

A criterion to select a linear classifier: the margin [1]

ABREN 4th Virtual Workshop 27

A criterion to select a linear classifier: the margin [1]

ABREN 4th Virtual Workshop 28

A criterion to select a linear classifier: the margin [1]

ABREN 4th Virtual Workshop 29

A criterion to select a linear classifier: the margin [1]

ABREN 4th Virtual Workshop 30

Largest Margin Linear Classifier [1]

ABREN 4th Virtual Workshop 31

Support Vectors with Large Margin

ABREN 4th Virtual Workshop 32

In equations

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .

• Next, we give a formula to compute the margin as a function of w.

ABREN 4th Virtual Workshop 33

How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx + b,
consider the interstice defined by the hyperplanes:

• f(x) = wTx + b = +1

• f(x) = wTx + b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

• Consider x1 and x2 such that x2 − x1 is parallel to w.

ABREN 4th Virtual Workshop 34

The margin is 2/||w||

• Margin = 2/‖w‖: the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ
def
= 2||x2 − x1|| =

2

||w||.

where γ is by definition the margin.

ABREN 4th Virtual Workshop 35

All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(

wTxi + b
)

≥ 1

ABREN 4th Virtual Workshop 36

Finding the optimal hyperplane

• Find (w, b) which minimize:
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective

ABREN 4th Virtual Workshop 37

Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

.

ABREN 4th Virtual Workshop 38

The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

}

is only defined when

w =
n

∑

i=1

αiyixi, (derivating w.r.t w) (∗)

0 =

n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.

• Strong duality holds. KKT gives us αi(yi

(

wTxi + b
)

− 1) = 0,
...hence, either αi = 0 or yi

(

wTxi + b
)

= 1.

• αi 6= 0 only for points on the support hyperplanes {(x, y)| yi(w
Txi + b) = 1}.

ABREN 4th Virtual Workshop 39

Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1 αi − 1
2

∑n

i,j=1 αiαjyiyjx
T
i xj

such that α � 0,
∑n

i=1 αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α∗ can be computed using optimization software
(e.g. built-in matlab function)

ABREN 4th Virtual Workshop 40

Recovering the optimal hyperplane

• With α∗, we recover (wT , b∗) corresponding to the optimal hyperplane.

• wT is given by wT =
∑n

i=1 yiαix
T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1

2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx + b∗

=

n
∑

i=1

yiαix
T
i x + b∗.

• Here the dual solution gives us directly the primal solution.

ABREN 4th Virtual Workshop 41

Interpretation: support vectors

α>0

α=0

ABREN 4th Virtual Workshop 42

What happens when the data is not linearly separable?

ABREN 4th Virtual Workshop 43

What happens when the data is not linearly separable?

ABREN 4th Virtual Workshop 44

What happens when the data is not linearly separable?

ABREN 4th Virtual Workshop 45

What happens when the data is not linearly separable?

ABREN 4th Virtual Workshop 46

Soft-margin SVM [2]

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{

1

margin(f)
+ C × errors(f)

}

• C is a parameter

ABREN 4th Virtual Workshop 47

Soft-margin SVM formulation [2]

• The margin of a labeled point (x, y) is

margin(x, y) = y
(

wTx + b
)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1 − margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b

{‖w‖2 + C
n

∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

• c(u, y) = max{0, 1 − yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.

ABREN 4th Virtual Workshop 48

Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b

{‖w‖2 + C
n

∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1 ξi

such that yi

(

wTxi + b
)

≥ 1 − ξi

• In that case the dual function

g(α) =
n

∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1 αiyi = 0.

ABREN 4th Virtual Workshop 49

Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=

ABREN 4th Virtual Workshop 50

Sometimes linear classifiers are of little use

ABREN 4th Virtual Workshop 51

Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let φ(x) = (x2
1, x

2
2)

′, w = (1, 1)′ and b = 1. Then the decision function is:

f(x) = x2
1 + x2

2 − R2 = 〈w, φ(x) 〉 + b,

ABREN 4th Virtual Workshop 52

Kernel trick for SVM’s [2]

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1

x2

])

=

[

x2
1

x2
2

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′

1)
2 + (x2)

2(x′
2)

2.

ABREN 4th Virtual Workshop 53

Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1 αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉 + b∗

=
n

∑

i=1

yiαik(xi, x) + b∗.
(1)

ABREN 4th Virtual Workshop 54

The Kernel Trick [10]

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1
2α

T (yTKy)α
such that 0 ≤ αi ≤ C, for i = 1, . . . , n

∑n

i=1 αiyi = 0.

• K’s positive definiten ⇔ problem has an optimum

• the decision function is f(·) =
∑n

i=1 αi k(xi, ·) + b.

ABREN 4th Virtual Workshop 55

Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√

2x1x2, x
2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2

• Many more:

ABREN 4th Virtual Workshop 56

Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models

ABREN 4th Virtual Workshop 57

Some kernels for biological structures

ABREN 4th Virtual Workshop 58

Kernels for Sequences

Sequences in Biological Sequences

• DNA sequences: 3 billion bases (ATGC) long sequence.

• Protein sequences: variable-length word of a 20-letter alphabet

Challenges to define a good sequence kernel

• positive-definiteness

• small computational effort required to compute k(xi, xj)
...for N points we have to compute N2 similarities...

• ability to handle variable-length data.

ABREN 4th Virtual Workshop 59

Kernels for Sequences

• Existing tools:

◦ Sequence alignments: BLAST, Smith-Waterman

◦ Estimate statistical models for each class, e.g. Hidden Markov Models

• Problem... no positive definiteness.

ABREN 4th Virtual Workshop 60

Kernels for Sequences

Finite set of features

• Represent strings as histograms of subsequences (spectrum [7], weighted
degree [12])

• Use possible mismatches in these representations to account for mutations
[8, 6]

Infinite and advanced features

• Use probabilistic models to generate features pθ(s) where θ is a parameter,

k(s, s′) =

∫

θ∈Θ

pθ(s)pθ(s
′)ω(dθ). [3]

• Use feature representations that translate into sums over all possible
alignments [13]

ABREN 4th Virtual Workshop 61

Kernels for Graphs

• Molecules, protein folds

• Protein interaction networks

• Metabolic pathways

• Sequences can also be seen as linear graphs.

• How to compare them?

ABREN 4th Virtual Workshop 62

Kernels for Graphs

• Natural idea: decompose graphs into sub-graphs...

• ... and use histograms of sub-graphs?

• Problem: this approach is not feasible because it is not tractable.

• Combinatorial limits: Computing these histograms is a NP-hard problem.

ABREN 4th Virtual Workshop 63

Kernels for Graphs

• Instead, previous contributions [5, 9, 14] have considered walks in the graph

etc...

• Graph → {set of walks} → {sequences (of vertex labels, edge labels etc.)}.

ABREN 4th Virtual Workshop 64

Kernels for Graphs

• Idea: Use these large sets of sequences to compare two graphs:

• First, for any arbitrary subsequence s, count how many times it appears in any
walk w of a graph G, weighted by a weight on the walk λ(w).

φs(G) =
∑

w walk in G

λ(w)1(s in w)

• Compare two graphs by taking the dot-product of φ’s:

k(G, G′) =
∑

all sequences s in S

φs(G)φs(G
′)

For some settings (λ, S, restricted walks)
k can be computed in polynomial time,

without having to compute the φ vectors.

ABREN 4th Virtual Workshop 65

Kernels for Graphs

References

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the 5th annual ACM workshop on Computational Learning

Theory, pages 144–152. ACM Press, 1992.

[2] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273,

1995.

[3] Marco Cuturi and Jean-Philippe Vert. The context-tree kernel for strings. Neural Networks,

18(8), 2005.

[4] T. Hastie, R. Tibshirani, and J. Friedman. Elements of Statistical Learning: Data Mining,

Inference, and Prediction (2nd edition). Springer Verlag, 2009.

[5] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In

T. Faucett and N. Mishra, editors, Proceedings of the Twentieth International Conference on

Machine Learning, pages 321–328. AAAI Press, 2003.

[6] C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences.

The Journal of Machine Learning Research, 5:1435–1455, 2004.

[7] Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: a string

kernel for svm protein classific ation. In Proc. of PSB 2002, pages 564–575, 2002.

[8] Christina Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble. Mismatch string

kernels for svm protein classification. In Suzanna Becker, Sebastian Thrun, and Klaus

Obermayer, editors, NIPS 15. MIT Press, 2003.

ABREN 4th Virtual Workshop 66

[9] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized graph

kernels. In R. Greiner and D. Schuurmans, editors, Proceedings of the Twenty-First

International Conference on Machine Learning (ICML 2004), pages 552–559. ACM Press,

2004.

[10] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization , Optimization, and Beyond. MIT Press, 2002.

[11] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel Methods in Computational

Biology. MIT Press, 2004.

[12] S. Sonnenburg, G. Rätsch, and B. Schölkopf. Large scale genomic sequence SVM classifiers.

In Proceedings of the 22nd international conference on Machine learning, pages 848–855.

ACM, 2005.

[13] Jean-Philippe Vert and Yoshihiro Yamanishi. Supervised graph inference. In Lawrence K.

Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing

Systems 17. MIT Press, 2005.

[14] SVN Vishwanathan, K.M. Borgwardt, I.R. Kondor, and N.N. Schraudolph. Graph kernels.

Journal of Machine Learning Research, 9:1–37, 2008.

ABREN 4th Virtual Workshop 67

