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Abstract

Optimal transport distances are a fundamental family of distances for probability
measures and histograms of features. Despite their appealing theoretical proper-
ties, excellent performance in retrieval tasks and intuitive formulation, their com-
putation involves the resolution of a linear program whose cost can quickly be-
come prohibitive whenever the size of the support of these measures or the his-
tograms’ dimension exceeds a few hundred. We propose in this work a new family
of optimal transport distances that look at transport problems from a maximum-
entropy perspective. We smooth the classic optimal transport problem with an
entropic regularization term, and show that the resulting optimum is also a dis-
tance which can be computed through Sinkhorn’s matrix scaling algorithm at a
speed that is several orders of magnitude faster than that of transport solvers. We
also show that this regularized distance improves upon classic optimal transport
distances on the MNIST classification problem.

1 Introduction

Choosing a suitable distance to compare probabilities is a key problem in statistical machine learn-
ing. When little is known on the probability space on which these probabilities are supported, various
information divergences with minimalistic assumptions have been proposed to play that part, among
which the Hellinger, χ2, total variation or Kullback-Leibler divergences. When the probability
space is a metric space, optimal transport distances (Villani, 2009, §6), a.k.a. earth mover’s (EMD)
in computer vision (Rubner et al., 1997), define a more powerful geometry to compare probabilities.

This power comes, however, with a heavy computational price tag. No matter what the algorithm
employed – network simplex or interior point methods – the cost of computing optimal transport
distances scales at least in O(d3log(d)) when comparing two histograms of dimension d or two
point clouds each of size d in a general metric space (Pele and Werman, 2009, §2.1).

In the particular case that the metric probability space of interest can be embedded in Rn and n is
small, computing or approximating optimal transport distances can become reasonably cheap. In-
deed, when n = 1, their computation only requiresO(d log d) operations. When n ≥ 2, embeddings
of measures can be used to approximate them in linear time (Indyk and Thaper, 2003; Grauman and
Darrell, 2004; Shirdhonkar and Jacobs, 2008) and network simplex solvers can be modified to run
in quadratic time (Gudmundsson et al., 2007; Ling and Okada, 2007). However, the distortions of
such embeddings (Naor and Schechtman, 2007) as well as the exponential increase of costs incurred
by such modifications as n grows make these approaches inapplicable when n exceeds 4. Outside of
the perimeter of these cases, computing a single distance between a pair of measures supported by
a few hundred points/bins in an arbitrary metric space can take more than a few seconds on a single
CPU. This issue severely hinders the applicability of optimal transport distances in large-scale data
analysis and goes as far as putting into question their relevance within the field of machine learning,
where high-dimensional histograms and measures in high-dimensional spaces are now prevalent.
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We show in this paper that another strategy can be employed to speed-up optimal transport, and even
potentially define a better distance in inference tasks. Our strategy is valid regardless of the metric
characteristics of the original probability space. Rather than exploit properties of the metric proba-
bility space of interest (such as embeddability in a low-dimensional Euclidean space) we choose to
focus directly on the original transport problem, and regularize it with an entropic term. We argue
that this regularization is intuitive given the geometry of the optimal transport problem and has,
in fact, been long known and favored in transport theory to predict traffic patterns (Wilson, 1969).
From an optimization point of view, this regularization has multiple virtues, among which that of
turning the transport problem into a strictly convex problem that can be solved with matrix scaling
algorithms. Such algorithms include Sinkhorn’s celebrated fixed point iteration (1967), which is
known to have a linear convergence (Franklin and Lorenz, 1989; Knight, 2008). Unlike other itera-
tive simplex-like methods that need to cycle through complex conditional statements, the execution
of Sinkhorn’s algorithm only relies on matrix-vector products. We propose a novel implementation
of this algorithm that can compute simultaneously the distance of a single point to a family of points
using matrix-matrix products, and which can therefore be implemented on GPGPU architectures.
We show that, on the benchmark task of classifying MNIST digits, regularized distances perform
better than standard optimal transport distances, and can be computed several orders of magnitude
faster.

This paper is organized as follows: we provide reminders on optimal transport theory in Section 2,
introduce Sinkhorn distances in Section 3 and provide algorithmic details in Section 4. We follow
with an empirical study in Section 5 before concluding.

2 Reminders on Optimal Transport

Transport Polytope and Interpretation as a Set of Joint Probabilities In what follows, 〈·, ·〉
stands for the Frobenius dot-product. For two probability vectors r and c in the simplex Σd := {x ∈
Rd+ : xT1d = 1}, where 1d is the d dimensional vector of ones, we write U(r, c) for the transport
polytope of r and c, namely the polyhedral set of d× d matrices,

U(r, c) := {P ∈ Rd×d+ | P1d = r, PT1d = c}.

U(r, c) contains all nonnegative d × d matrices with row and column sums r and c respectively.
U(r, c) has a probabilistic interpretation: for X and Y two multinomial random variables taking
values in {1, · · · , d}, each with distribution r and c respectively, the set U(r, c) contains all possible
joint probabilities of (X,Y ). Indeed, any matrix P ∈ U(r, c) can be identified with a joint probabil-
ity for (X,Y ) such that p(X = i, Y = j) = pij . We define the entropy h and the Kullback-Leibler
divergences of P,Q ∈ U(r, c) and a marginals r ∈ Σd as

h(r) = −
d∑
i=1

ri log ri, h(P ) = −
d∑

i,j=1

pij log pij , KL(P‖Q) =
∑
ij

pij log
pij
qij
.

Optimal Transport Distance Between r and c Given a d×d cost matrix M , the cost of mapping
r to c using a transport matrix (or joint probability) P can be quantified as 〈P,M 〉. The problem
defined in Equation (1)

dM (r, c) := min
P∈U(r,c)

〈P,M 〉. (1)

is called an optimal transport (OT) problem between r and c given cost M . An optimal table P ?
for this problem can be obtained, among other approaches, with the network simplex (Ahuja et al.,
1993, §9). The optimum of this problem, dM (r, c), is a distance between r and c (Villani, 2009,
§6.1) whenever the matrix M is itself a metric matrix, namely whenever M belongs to the cone of
distance matrices (Avis, 1980; Brickell et al., 2008):

M = {M ∈ Rd×d+ : ∀i, j ≤ d,mij = 0⇔ i = j, ∀i, j, k ≤ d,mij ≤ mik +mkj}.

For a general matrixM , the worst case complexity of computing that optimum scales inO(d3 log d)
for the best algorithms currently proposed, and turns out to be super-cubic in practice as well (Pele
and Werman, 2009, §2.1).
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3 Sinkhorn Distances: Optimal Transport with Entropic Constraints

Entropic Constraints on Joint Probabilities The following information theoretic inequality
(Cover and Thomas, 1991, §2) for joint probabilities

∀r, c ∈ Σd,∀P ∈ U(r, c), h(P ) ≤ h(r) + h(c),

is tight, since the independence table rcT (Good, 1963) has entropy h(rcT ) = h(r) + h(c). By the
concavity of entropy, we can introduce the convex set

Uα(r, c) := {P ∈ U(r, c) |KL(P‖rcT ) ≤ α} = {P ∈ U(r, c) |h(P ) ≥ h(r)+h(c)−α} ⊂ U(r, c).

These two definitions are indeed equivalent, since one can easily check that KL(P‖rcT ) = h(r) +
h(c) − h(P ), a quantity which is also the mutual information I(X‖Y ) of two random variables
(X,Y ) should they follow the joint probability P (Cover and Thomas, 1991, §2). Hence, the set of
tables P whose Kullback-Leibler divergence to rcT is constrained to lie below a certain threshold
can be interpreted as the set of joint probabilities P in U(r, c) which have sufficient entropy with
respect to h(r) and h(c), or small enough mutual information. For reasons that will become clear in
Section 4, we call the quantity below the Sinkhorn distance of r and c:
Definition 1 (Sinkhorn Distance). dM,α(r, c) := min

P∈Uα(r,c)
〈P,M 〉

Why consider an entropic constraint in optimal transport? The first reason is computational, and is
detailed in Section 4. The second reason is built upon the following intuition. As a classic result
of linear optimization, the OT problem is always solved on a vertex of U(r, c). Such a vertex is
a sparse d × d matrix with only up to 2d − 1 non-zero elements (Brualdi, 2006, §8.1.3). From a
probabilistic perspective, such vertices are quasi-deterministic joint probabilities, since if pij > 0,
then very few probabilities pij′ for j 6= j′ will be non-zero in general. Rather than considering
such outliers of U(r, c) as the basis of OT distances, we propose to restrict the search for low cost
joint probabilities to tables with sufficient smoothness. Note that this is equivalent to considering
the maximum-entropy principle (Jaynes, 1957; Darroch and Ratcliff, 1972) if we were to maximize
entropy while keeping the transportation cost constrained.

Before proceeding to the description of the properties of Sinkhorn distances, we note that Ferradans
et al. (2013) have recently explored similar ideas. They relax and penalize (through graph-based
norms) the original transport problem to avoid undesirable properties exhibited by the original op-
tima in the problem of color matching. Combined, their idea and ours suggest that many more
smooth regularizers will be worth investigating to solve the the OT problem, driven by either or both
computational and modeling motivations.

Metric Properties of Sinkhorn Distances When α is large enough, the Sinkhorn distance co-
incides with the classic OT distance. When α = 0, the Sinkhorn distance has a closed form and
becomes a negative definite kernel if one assumes that M is itself a negative definite distance, or
equivalently a Euclidean distance matrix1.
Property 1. For α large enough, the Sinkhorn distance dM,α is the transport distance dM .

Proof. Since for any P ∈ U(r, c), h(P ) is lower bounded by 1
2 (h(r) + h(c)), we have that for α

large enough Uα(r, c) = U(r, c) and thus both quantities coincide.�
Property 2 (Independence Kernel). dM,0 = rTMc. If M is a Euclidean distance matrix, dM,0 is a
negative definite kernel and e−tdM,0 , the independence kernel, is positive definite for all t > 0.

The proof is provided in the appendix. Beyond these two extreme cases, the main theorem of this
section states that Sinkhorn distances are symmetric and satisfy triangle inequalities for all possible
values of α. Since for α small enough dM,α(r, r) > 0 for any r such that h(r) > 0, Sinkhorn
distances cannot satisfy the coincidence axiom (d(x, y) = 0 ⇔ x = y holds for all x, y). However,
multiplying dM,α by 1r 6=c suffices to recover the coincidence property if needed.
Theorem 1. For all α ≥ 0 and M ∈ M, dM,α is symmetric and satisfies all triangle inequalities.
The function (r, c) 7→ 1r 6=cdM,α(r, c) satisfies all three distance axioms.

1∃n,∃ϕ1, · · · , ϕd ∈ Rn such that mij = ‖ϕi − ϕj‖22. Recall that, in that case, M raised to power t
element-wise, [mt

ij ], 0 < t < 1 is also a Euclidean distance matrix (Berg et al., 1984, p.78,§3.2.10).

3



M
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Figure 1: Transport polytope U(r, c) and Kullback-Leibler ball Uα(r, c) of level α centered
around rcT . This drawing implicitly assumes that the optimal transport P ? is unique. The Sinkhorn
distance dM,α(r, c) is equal to 〈Pα,M 〉, the minimum of the dot product withM on that ball. For α
large enough, both objectives coincide, as Uα(r, c) gradually overlaps with U(r, c) in the vicinity
of P ?. The dual-sinkhorn distance dλM (r, c), the minimum of the transport problem regularized by
minus the entropy divided by λ, reaches its minimum at a unique solution Pλ, forming a regular-
ization path for varying λ from rcT to P ?. For a given value of α, and a pair (r, c) there exists
λ ∈ [0,∞] such that both dλM (r, c) and dM,α(r, c) coincide. dλM can be efficiently computed using
Sinkhorn’s fixed point iteration (1967). Although the convergence to P ? of this fixed point iteration
is theoretically guaranteed as λ → ∞, the procedure cannot work beyond a problem-dependent
value λmax beyond which some entries of e−λM are represented as zeroes in memory.

The gluing lemma (Villani, 2009, p.19) is key to proving that OT distances are indeed distances. We
propose a variation of this lemma to prove our result:
Lemma 1 (Gluing Lemma With Entropic Constraint). Let α ≥ 0 and x, y, z ∈ Σd. Let P ∈
Uα(x, y) and Q ∈ Uα(y, z). Let S be the d× d defined as sik :=

∑
j
pijqjk
yj

. Then S ∈ Uα(x, z).

The proof is provided in the appendix. We can prove the triangle inequality for dM,α by using the
same proof strategy than that used for classic transport distances:

Proof of Theorem 1. The symmetry of dM,α is a direct result of M ’s symmetry. Let x, y, z be three
elements in Σd. Let P ∈ Uα(x, y) and Q ∈ Uα(y, z) be two optimal solutions for dM,α(x, y) and
dM,α(y, z) respectively. Using the matrix S of Uα(x, z) provided in Lemma 1, we proceed with the
following chain of inequalities:

dM,α(x, z) = min
P∈Uα(x,z)

〈P,M 〉 ≤ 〈S,M 〉 =
∑
ik

mik

∑
j

pijqjk
yj

≤
∑
ijk

(mij +mjk)
pijqjk
yj

=
∑
ijk

mij
pijqjk
yj

+mjk
pijqjk
yj

=
∑
ij

mijpij
∑
k

qjk
yj

+
∑
jk

mjkqjk
∑
i

pij
yj

=
∑
ij

mijpij +
∑
jk

mjkqjk = dM,α(x, y) + dM,α(y, z).�

4 Computing Regularized Transport with Sinkhorn’s Algorithm

We consider in this section a Lagrange multiplier for the entropy constraint of Sinkhorn distances:

For λ > 0, dλM (r, c) := 〈Pλ,M 〉, where Pλ = argmin
P∈U(r,c)

〈P,M 〉 − 1

λ
h(P ). (2)

By duality theory we have that to each α corresponds a λ ∈ [0,∞] such that dM,α(r, c) = dλM (r, c)
holds for that pair (r, c). We call dλM the dual-Sinkhorn divergence and show that it can be computed
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for a much cheaper cost than the original distance dM . Figure 1 summarizes the relationships be-
tween dM , dM,α and dλM . Since the entropy of Pλ decreases monotonically with λ, computing dM,α

can be carried out by computing dλM with increasing values of λ until h(Pλ) reaches h(r)+h(c)−α.
We do not consider this problem here and only use the dual-Sinkhorn divergence in our experiments.

Computing dλM with Matrix Scaling Algorithms Adding an entropy regularization to the opti-
mal transport problem enforces a simple structure on the optimal regularized transport Pλ:
Lemma 2. For λ > 0, the solution Pλ is unique and has the form Pλ = diag(u)K diag(v),
where u and v are two non-negative vectors of Rd uniquely defined up to a multiplicative factor and
K := e−λM is the element-wise exponential of −λM .

Proof. The existence and unicity of Pλ follows from the boundedness of U(r, c) and the strict
convexity of minus the entropy. The fact that Pλ can be written as a rescaled version of K is a well
known fact in transport theory (Erlander and Stewart, 1990, §3.3): let L(P, α, β) be the Lagrangian
of Equation (2) with dual variables α, β ∈ Rd for the two equality constraints in U(r, c):

L(P, α, β) =
∑
ij

1

λ
pij log pij + pijmij + αT (P1d − r) + βT (PT1d − c).

For any couple (i, j), (∂L/∂pij = 0) ⇒ pij = e−1/2−λαie−λmije−1/2−λβj . Since K is
strictly positive, Sinkhorn’s theorem (1967) states that there exists a unique matrix of the form
diag(u)K diag(v) that belongs to U(r, c), where u, v ≥ 0d. Pλ is thus necessarily that matrix,
and can be computed with Sinkhorn’s fixed point iteration (u, v)← (r./Kv, c./K ′u). �

Given K and marginals r and c, one only needs to iterate Sinkhorn’s update a sufficient number
of times to converge to Pλ. One can show that these successive updates carry out iteratively the
projection of K on U(r, c) in the Kullback-Leibler sense. This fixed point iteration can be written
as a single update u← r./K(c./K ′u). When r > 0d, diag(1./r)K can be stored in a d× d matrix
K̃ to save one Schur vector product operation with the update u ← 1./(K̃(c./K ′u)). This can be
easily ensured by selecting the positive indices of r, as seen in the first line of Algorithm 1.

Algorithm 1 Computation of d = [dλM (r, c1), · · · , dλM (r, cN )], using Matlab syntax.
Input M,λ, r, C := [c1, · · · , cN ].
I = (r > 0); r = r(I);M = M(I, :);K = exp(−λM)
u = ones(length(r), N)/length(r)

K̃ = bsxfun(@rdivide,K, r) % equivalent to K̃ = diag(1./r)K
while u changes or any other relevant stopping criterion do
u = 1./(K̃(C./(K ′u)))

end while
v = C./(K ′u)
d = sum(u. ∗ ((K. ∗M)v))

Parallelism, Convergence and Stopping Criteria As can be seen right above, Sinkhorn’s algo-
rithm can be vectorized and generalized to N target histograms c1, · · · , cN . When N = 1 and C
is a vector in Algorithm 1, we recover the simple iteration mentioned in the proof of Lemma 2.
When N > 1, the computations for N target histograms can be simultaneously carried out by up-
dating a single matrix of scaling factors u ∈ Rd×N+ instead of updating a scaling vector u ∈ Rd+.
This important observation makes the execution of Algorithm 1 particularly suited to GPGPU plat-
forms. Despite ongoing research in that field (Bieling et al., 2010) such speed ups have not been yet
achieved on complex iterative procedures such as the network simplex. Using Hilbert’s projective
metric, Franklin and Lorenz (1989) prove that the convergence of the scaling factor u (as well as v)
is linear, with a rate bounded above by κ(K)2, where

κ(K) =

√
θ(K)− 1√
θ(K) + 1

< 1, and θ(K) = max
i,j,l,m

KilKjm

KjlKim
.

The upper bound κ(K) tends to 1 as λ grows, and we do observe a slower convergence as Pλ gets
closer to the optimal vertex P ? (or the optimal facet of U(r, c) if it is not unique). Different stopping
criteria can be used for Algorithm 1. We consider two in this work, which we detail below.
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5 Experimental Results

Figure 2: Average test errors with shaded confi-
dence intervals. Errors are computed using 1/4 of the
dataset for train and 3/4 for test. Errors are averaged
over 4 folds × 6 repeats = 24 experiments.

MNIST Digits We test the performance of
dual-Sinkhorn divergences on the MNIST
digits dataset. Each image is converted
to a vector of intensities on the 20 × 20
pixel grid, which are then normalized to
sum to 1. We consider a subset of N ∈
{3, 5, 12, 17, 25}×103 points in the dataset.
For each subset, we provide mean and stan-
dard deviation of classification error using
a 4 fold (3 test, 1 train) cross validation
(CV) scheme repeated 6 times, resulting
in 24 different experiments. Given a dis-
tance d, we form the kernel e−d/t, where
t > 0 is chosen by CV on each train-
ing fold within {1, q10(d), q20(d), q50(d)},
where qs is the s% quantile of a subset of
distances observed in that fold. We regu-
larize non-positive definite kernel matrices
resulting from this computation by adding
a sufficiently large diagonal term. SVM’s
were run with Libsvm (one-vs-one) for mul-
ticlass classification. We select the regular-
ization C in 10{−2,0,4} using 2 folds/2 repeats CV on the training fold. We consider the Hellinger,
χ2, total variation and squared Euclidean (Gaussian kernel) distances. M is the 400 × 400 matrix
of Euclidean distances between the 20 × 20 bins in the grid. We also tried Mahalanobis distances
on this example using exp(-tM.ˆ2), t>0 as well as its inverse, with varying values of t, but
none of these results proved competitive. For the Independence kernel we considered [ma

ij ] where
a ∈ {0.01, 0.1, 1} is chosen by CV on each training fold. We select λ in {5, 7, 9, 11} × 1/q50(M)
where q50(M(:)) is the median distance between pixels. We set the number of fixed-point iterations
to an arbitrary number of 20 iterations. In most (though not all) folds, the value λ = 9 comes up as
the best setting. The dual-Sinkhorn divergence beats by a safe margin all other distances, including
the classic optimal transport distance, here labeled as EMD.
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Figure 3: Decrease of the gap between the dual-
Sinkhorn divergence and the EMD as a function of
λ on a subset of the MNIST dataset.

Does the Dual-Sinkhorn Divergence Con-
verge to the EMD? We study the conver-
gence of the dual-Sinkhorn divergence to-
wards classic optimal transport distances as
λ grows. Because of the regularization in
Equation (2), dλM (r, c) is necessarily larger
than dM (r, c), and we expect this gap to de-
crease as λ increases. Figure 3 illustrates
this by plotting the boxplot of the distri-
butions of (dλM (r, c) − dM (r, c))/dM (r, c)
over 402 pairs of images from the MNIST
database. dλM typically approximates the
EMD with a high accuracy when λ exceeds
50 (median relative gap of 3.4% and 1.2%
for 50 and 100 respectively). For this exper-
iment as well as all the other experiments be-
low, we compute a vector of N divergences
d at each iteration, and stop when none of
the N values of d varies more in absolute
value than a 1/100th of a percent i.e. we stop
when ‖dt./dt−1 − 1‖∞ < 1e− 4.
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Figure 4: Average computational time required to com-
pute a distance between two histograms sampled uni-
formly in the d dimensional simplex for varying values
of d. Dual-Sinkhorn divergences are run both on a sin-
gle CPU and on a GPU card.

Several Orders of Magnitude Faster
We measure the computational speed of
classic optimal transport distances vs. that
of dual-Sinkhorn divergences using Rub-
ner et al.’s (1997) and Pele and Wer-
man’s (2009) publicly available imple-
mentations. We pick a random distance
matrix M by generating a random graph
of d vertices with edge presence probabil-
ity 1/2 and edge weights uniformly dis-
tributed between 0 and 1. M is the all-
pairs shortest-path matrix obtained from
this connectivity matrix using the Floyd-
Warshall algorithm (Ahuja et al., 1993,
§5.6). Using this procedure, M is likely
to be an extreme ray of the coneM (Avis,
1980, p.138). The elements of M are
then normalized to have unit median. We
implemented Algorithm 1 in matlab, and
use emd mex and emd hat gd metric
mex/C files. The EMD distances and
Sinkhorn CPU are run on a single core
(2.66 Ghz Xeon). Sinkhorn GPU is run
on a NVidia Quadro K5000 card. We con-
sider λ in {1, 10, 50}. λ = 1 results in
a relatively dense matrix K, with results
comparable to that of the Independence kernel, while for λ = 10 or 50 K = e−λM has very small
values. Rubner et al.’s implementation cannot be run for histograms larger than d = 512. As can be
expected, the competitive advantage of dual-Sinkhorn divergences over EMD solvers increases with
the dimension. Using a GPU results in a speed-up of an additional order of magnitude.

Figure 5: The influence of λ on the number of
iterations required to converge on histograms uni-
formly sampled from the simplex.

Empirical Complexity To provide an accu-
rate picture of the actual cost of the algorithm,
we replicate the experiments above but focus
now on the number of iterations (matrix-matrix
products) typically needed to obtain the conver-
gence of a set of N divergences from a given
point r, all uniformly sampled on the simplex.
As can be seen in Figure 5, the number of it-
erations required for vector d to converge in-
creases as e−λM becomes diagonally dominant.
However, the total number of iterations does
not seem to vary with respect to the dimen-
sion. This observation can explain why we do
observe a quadratic (empirical) time complex-
ity O(d2) with respect to the dimension d in
Figure 4 above. These results suggest that the
costly action of keeping track of the actual ap-
proximation error (computing variations in d)
is not required, and that simply predefining a
fixed number of iterations can work well and
yield even additional speedups.

6 Conclusion

We have shown that regularizing the optimal transport problem with an entropic penalty opens the
door for new numerical approaches to compute OT. This regularization yields speed-ups that are
effective regardless of any assumptions on the ground metric M . Based on preliminary evidence, it
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seems that dual-Sinkhorn divergences do not perform worse than the EMD, and may in fact perform
better in applications. Dual-Sinkhorn divergences are parameterized by a regularization weight λ
which should be tuned having both computational and performance objectives in mind, but we have
not observed a need to establish a trade-off between both. Indeed, reasonably small values of λ seem
to perform better than large ones.
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7 Appendix: Proofs

Proof of Property 1. The set U1(r, c) contains all joint probabilities P for which h(P ) = h(r) +
h(c). In that case (Cover and Thomas, 1991, Theorem 2.6.6) applies and U1(r, c) can only be
equal to the singleton {rcT }. If M is negative definite, there exists vectors (ϕ1, · · · , ϕd) in some
Euclidean space Rn such that mij = ‖ϕi − ϕj‖22 through (Berg et al., 1984, §3.3.2). We thus have
that

rTMc =
∑
ij

ricj‖ϕi − ϕj‖2 = (
∑
i

ri‖ϕi‖2 +
∑
i

ci‖ϕi‖2)− 2
∑
ij

〈riϕi, cjϕj 〉

= rTu+ cTu− 2rTKc

where ui = ‖φi‖2 and Kij = 〈ϕi, ϕj 〉. We used the fact that
∑
ri =

∑
ci = 1 to go from the

first to the second equality. rTMc is thus a n.d. kernel because it is the sum of two n.d. kernels: the
first term (rTu + cTu) is the sum of the same function evaluated separately on r and c, and thus a
negative definite kernel (Berg et al., 1984, §3.2.10); the latter term −2rTKu is negative definite as
minus a positive definite kernel (Berg et al., 1984, Definition §3.1.1).

Remark. The proof above suggests a faster way to compute the Independence kernel. Given a matrix
M , one can indeed pre-compute the vector of norms u as well as a Cholesky factor L of K above
to preprocess a dataset of histograms by premultiplying each observations ri by L and only store
Lri as well as precomputing its diagonal term rTi u. Note that the independence kernel is positive
definite on histograms with the same 1-norm, but is no longer positive definite for arbitrary vectors.

Proof of Lemma 1. Let T be the a probability distribution on {1, · · · , d}3 whose coefficients are
defined as

tijk :=
pijqjk
yj

, (3)

for all indices j such that yj > 0. For indices j such that yj = 0, all values tijk are set to 0.

Let S := [
∑
j tijk]ik. S is a transport matrix between x and z. Indeed,∑

i

∑
j

sijk =
∑
j

∑
i

pijqjk
yj

=
∑
j

qjk
yj

∑
i

pij =
∑
j

qjk
yj
yj =

∑
j

qjk = zk (column sums)

∑
k

∑
j

sijk =
∑
j

∑
k

pijqjk
yj

=
∑
j

pij
yj

∑
k

qjk =
∑
j

pij
yj
yj =

∑
j

pij = xi (row sums)

We now prove that h(S) ≥ h(x) + h(z) − α. Let (X,Y, Z) be three random variables jointly
distributed as T . Since by definition of T in Equation (3)

p(X,Y, Z) = p(X,Y )p(Y,Z)/p(Y ) = p(X)p(Y |X)p(Z|Y ),

the triplet (X,Y, Z) is a Markov chain X → Y → Z (Cover and Thomas, 1991, Equation 2.118)
and thus, by virtue of the data processing inequality (Cover and Thomas, 1991, Theorem 2.8.1), the
following inequality between mutual informations applies:

I(X;Y ) ≥ I(X;Z), namely h(X,Z)− h(X)− h(Z) ≥ h(X,Y )− h(X)− h(Y ) ≥ −α.
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