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Abstract

We propose a new kernel for strings which borrows ideas and techniques from information theory and data compression. This kernel can

be used in combination with any kernel method, in particular Support Vector Machines for string classification, with notable applications in

proteomics. By using a Bayesian averaging framework with conjugate priors on a class of Markovian models known as probabilistic suffix

trees or context-trees, we compute the value of this kernel in linear time and space while only using the information contained in the spectrum

of the considered strings. This is ensured through an adaptation of a compression method known as the context-tree weighting algorithm.

Encouraging classification results are reported on a standard protein homology detection experiment, showing that the context-tree kernel

performs well with respect to other state-of-the-art methods while using no biological prior knowledge.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The need for efficient analysis and classification tools for

strings remains a key issue in machine learning. This is

notably the case in computational biology where the

availability of an ever-increasing quantity of biological

sequences calls for efficient and computationally feasible

algorithms to detect, cluster, and annotate functional

similarities between DNA or amino-acid sequences.

Recent years have witnessed the rapid development of a

class of algorithms called kernel methods (Schölkopf &

Smola, 2002) that may offer useful tools for these tasks. In

particular, the Support Vector Machine (SVM) algorithms

(Boser, Guyon, & Vapnik, 1992; Vapnik and Vladimir N.

Vapnik, 1998) provide state-of-the-art performance in many

real-world problems of classifying objects into predefined

classes. SVMs have already been applied with success to a

number of issues in computational biology, including but not

limited to protein homology detection (Ben-hur & Brutlag,

2003; Tommi Jaakkola, Mark Diekhans, & David Haussler,

2000; Christina Leslie, Eleazar Eskin, & William Stafford
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Noble, 2002; Christina Leslie, Eleazar Eskin, Jason Weston,

& William Stafford Noble, 2003; Noble & Liao, 2002;

Jean-Philippe Vert, Hiroto Saigo, & Tatsuya Akutsu, 2004),

functional classification of genes (Liao & Noble, 2002; Vert,

2002), or prediction of gene localization (Hua & Sun, 2001).

A more complete survey of the application of kernel methods

in computational biology is presented in (Bernhard

Schölkopf, Koji Tsuda, & Jean-Philippe Vert, 2004).

The basic ingredient shared by all kernel methods is the

kernel function that measures similarities between pairs of

objects to be analyzed or classified. To use kernel methods

in the field of string classification requires a prior design of

an efficient kernel function on strings. Indeed, while early

days SVM focused on the classification of vector-valued

objects, for which kernels are well understood and easily

represented, recent attempts to use SVM for the classifi-

cation of more general objects have resulted in the

development of several kernels for structured objects such

as strings (Ben-hur & Brutlag, 2003; David, 1999; Tommi

Jaakkola et al., 2000; Christina Leslie et al., 2002; Christina

Leslie et al., 2003; Noble & Liao, 2002; Jean-Philippe Vert

et al., 2004; Watkins & C. Watkins, 2000), graphs

(Kashima, Tsuda, & Inokuchi, 2003), or even phylogenetic

profiles (Vert, 2002).

A useful kernel for sequences, as the one we wish to

propose in this work, should have several properties.

It should represent a meaningful measure of similarity
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between two sequences and be general enough to be

efficient on different datasets without excessive tuning. This

similarity measure needs to be further positive definite to be

applied in the general framework of kernel methods and

rapid to compute to sustain large-scale implementations

(typically, have a linear complexity with respect to the

lengths of the compared sequences). Such an ideal kernel

probably does not exist, and different kernels might be

useful in different situations. For large-scale studies which

might involve comparing thousands of sequences, yielding

to millions of kernel evaluations, or to answer simple

queries which could be found in on-line applications, the

computation cost becomes critical and only fast kernels,

such as the spectrum (Christina Leslie et al., 2002) and

mismatch (Christina Leslie et al., 2003) kernels can be

accepted. In applications where accuracy is more important

than speed, slower kernels that include more biological

knowledge such as the Fisher (Tommi Jaakkola et al., 2000),

pairwise (Liao & Noble, 2002) or local alignment

(Jean-Philippe Vert et al., 2004) kernels might be accepted

if they improve the performance of a classifier.

Our contribution in this paper is to introduce a new class

of string kernels which are both fast to compute and based

on the spectrum of the considered strings. The spectrum of a

string as defined by (Christina Leslie et al., 2002) is the

weighted list of k-mers (or k-grams, that is a substring of k

letters) contained in the string, where the weights stand for

the occurrence (or relative frequency with respect to the

string’s length) of the considered k-mer in the string. While

the work of (Christina Leslie et al., 2002) uses a linear dot-

product on that representation, we propose in this work an

alternative class of kernels on those counters.

The motivation behind these kernels is grounded on

information theory, in a similar way to the work proposed

recently in (Ming Li, Xin Chen, Xin Li, Bin Ma, & Vitanyi

Vitanyi, 2004). By applying an information theoretic

viewpoint on the information carried out by strings, we

present a way to compare strings through kernel methods

using little prior knowledge on the structure of the alphabet,

just as universal coding (Cover & Thomas, 1991) aims at

giving a sound compression of sequences with no prior

assumptions on the nature of those sequences. This

information theoretic viewpoint takes the form of a string

compression algorithm, which is first applied on two strings

X and Y to be compared taken separately, and then on their

concatenation XY. Intuitively, if the compression behaves in

a similar way (in terms of gain for instance) for X, Y and XY,

one can expect the strings to share similar properties. On the

opposite, one might conclude that the strings are dissimilar

if their concatenation cannot be efficiently compressed. This

intuition can be translated mathematically in terms of

differences in coding redundancy between X and Y with

respect to XY, in the light of noiseless coding theory for

instance (Cover & Thomas, 1991).

The compression method we choose in this work is the

popular context-tree weighting (CTW) algorithm (Willems,
Shtarkov, & Tjalkens, 1995), and we show how to derive a

kernel out of it. The compression performed by the CTW

algorithm involves a Bayesian averaging of the probability

of a string under a large collection of weighted source

distributions. These source distributions are chosen among

variable-length Markov chains, which are also known as

context-tree (CT) models. Using the CTW algorithm to

derive a kernel brings a sound answer to the criterions

expressed previously, since it guarantees positive definite-

ness, computational speed, and an additional interpretation

(other than the one considered by compression) to our

kernel.

Indeed, the integral representation of the CTW com-

pression, not shared with ad hoc heuristics such as the

Lempel–Ziv algorithm, first enables us to cast easily the

proposed kernels in the framework of mutual information

kernels (Seeger, 2002), which ensures their positive

definiteness. Second, the Bayesian integration over Marko-

vian (and hence exponential) models performed by such

kernels provides us with an alternative probabilistic

interpretation of their computation. Following that alterna-

tive perspective, the kernels project each sequence to be

compared to the set of their probabilities under all

distributions contained in the class of CT models, and

compare different sequences in the light of their respective

projections. These projections can be intuitively considered

as feature extractions, where each considered context-tree

distribution acts as a feature extractor, providing a feature

which is the likelihood of the distribution for the considered

sequence. Because we find that perspective to be clearer, we

will favor this interpretation and present the family of

context-tree kernels in a constructive manner and as a

special case of mutual information kernels. However, the

reader should keep in mind that most choices in models and

priors taken to devise such kernels are chosen to match the

CTW algorithm’s ones, so as to benefit from its properties

including notably computational tricks presented by the

authors of (Willems et al., 1995) to ensure linear (in time

and space) computational costs.

The paper is organized as follows. In Section 2, we

present the general strategy of devising mutual information

kernels from families of probabilistic models. In Section 3,

we define a kernel for sequences based on context-tree

models. Its efficient implementation, derived from the CTW

algorithm, is presented in Section 4. We present further

interpretations of the context-tree kernel’s computation as

well as links with universal coding in Section 5.

Experimental results on a benchmark problem of remote

protein homology detection are then presented in Section 6.
2. Probabilistic models and mutual information kernels

A parametric probabilistic model on a measurable space

X is a family of distributions {Pq, q2Q} on X, where q is

the parameter of the distribution Pq. Typically, the set of
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parameters Q is a subset of R
n, in which case n is called the

dimension of the model. As an example, a hidden Markov

model (HMM) for sequences is a parametric model, the

parameters being the transition and emission probabilities

(Durbin, Eddy, & Krogh, 1998). A family of probabilistic

models is a family fPf ;qf
; f 2F; qf 2Qf g, where F is a finite

or countable set, and Qf 3R
dimðf Þ for each f 2F, where

dim(f) denotes the dimension of f. An example of such a

family would be a set of HMMs with different architectures

and numbers of states. Probabilistic models are typically

used to model sets of elements X1;.;Xn 2X, by selecting

a model f̂ and a choosing a parameter q̂f̂ that best ‘fits’ the

dataset, using criteria such as penalized maximum

likelihood or maximum a posteriori probability (Durbin

et al., 1998).

Alternatively, probabilistic models can also be used to

characterize each single element X 2X by the feature

representation

fðXÞ Z ðPf ;qf
ðXÞÞf2F;qf2Qf

; (1)

spanning all possible probabilities of X within the

considered families. If the probabilistic models are designed

in such a way that each distribution is roughly characteristic

of a class of objects of interest, then the representation f(X)

quantifies how X fits each class. In this representation, each

distribution can be seen as a filter that extracts from X an

information, namely the probability of X under this

distribution, or equivalently how much X fits the class

modelled by this distribution.

Kernels are real-valued function k : X!X/R that

can be represented in the form of a dot product k(X,Y)Z
hj(X), f(Y)iF for some mapping j from X to a Hilbert space

F (Schölkopf & Smola, 2002). Given the preceding

mapping f of Eq. (1), a natural way to derive a kernel

from a family of probabilistic models is to endow the set of

representations f(X) with a dot product, and set k(X,Y)Z
hf(X),f(Y)i. This can be done, for example, if a prior

probability p(f,dqf) can be defined on the set of distributions

in the models, by considering the following dot product:

kðX; YÞ Z hfðXÞ;fðYÞi
def X

f2F

pðf Þ

ð
Qf

Pf ;qf
ðXÞPf ;qf

ðYÞpðdqf Þ:

(2)

By construction, the kernel in Eq. (2) is a valid kernel

that belongs to the class of mutual information kernels

(Seeger, 2002). Observe that contrary to the Fisher kernel

that also uses probabilistic models, no model or parameter

estimation is required in Eq. (2). Intuitively, for any two

elements X and Y the kernel of Eq. (2) automatically detects

the models and parameters that explain both X and Y, with

consequent weights if the models and parameters are likely

to appear under the prior p. On the other hand, models and

parameters for which X and Y present no simultaneous fit
bring a marginal contribution to the value of the kernel and

are thus ignored.

There is, of course, some arbitrariness in the previous

definition, both in the definition of the models and in the

choice of the prior distribution p. This arbitrary can be used

to include prior knowledge in the kernel. For example, if

one wants to detect similarity with respect to families of

sequences known to be adequately modelled by HMMs,

then using HMM models constrains the kernel to detect such

similarities. However, these choices need to be decided

having computational limitations in mind. The calculations

involved in Eq. (2), namely the computation of the

likelihood of a distribution for two given sequences and

the integration of those likelihoods over a set of parameters,

should not only be tractable under a closed form but also fast

to compute. This is not likely to be the case for most families

of models and most choices of priors. We consider those

limitations under the light of the solution proposed by the

CTW algorithm in the framework of universal coding, to

define below a suitable set of models and prior distributions.

Prior to this definition, we note that some biases might

appear when attempting to compare sequences of different

lengths, which is likely to be the case for most applications.

Indeed, as the probability of a sequence under most models

defined on strings (including Markovian models) decreases

roughly exponentially with its length, the value of the kernel

(2) can not only be strongly biased if we directly consider

the probabilities of two strings of very different lengths, but

will also quickly tend to negligible values when comparing

long strings. This is a classical issue with many string

kernels that leads to bad performance in classification with

SVM (Bernhard Schölkopf, Jason Weston, & Eleazar Eskin,

2002; Jean-Philippe Vert et al., 2004). This undesirable

effect can easily be controlled in our case by normalizing the

likelihoods as follows

ksðX; YÞ Z
X
f2F

pðf Þ

ð
Qf

Pf ;qf
ðXÞs=NX Pf ;qf

ðYÞs=NY pðdqf Þ: (3)

where s is a width parameter and NX and NY stand for the

lengths of both sequences. Eq. (3) is clearly a valid kernel

(only the feature extractor f is modified), and the parameter

s controls the range of values it takes independently of the

lengths of the sequences used.
3. A mutual information kernel based

on context-tree models

In this section, we derive explicitly a mutual information

kernel for strings based on context-tree models with

mixtures of Dirichlet priors. Context-tree models, also

known as probabilistic suffix trees, are Markovian models

which are actually equivalent to Markov chains up to a

different parameterization as we will see below. They have

been shown useful to model several families of sequences,



Fig. 1. Tree representation of a context-tree distribution. The alphabet E is

set to {A,B,C}, the maximal depth D to 3 and the complete suffix dictionary

D is the set of strings {A, AB, BB, ACB, BCB, CCB, C}. Each parameter qs

for s2D is in that case a vector of the three-dimensional simplex S3.

1 Writing Sd for the canonical simplex of dimension d, i.e.

Sd ZfxZ ðxiÞ1%i%d : xi R0;Sxi Z1g.
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including biological ones as illustrated by their use in

(Bejerano & Yona, 1999; Eleazar Eskin, William Noble, &

Yoram Singer, 2000) where different techniques to estimate

such models on protein sequences where proposed. Note

however that the use of context-trees in the present work

should not be related excessively to their previous success in

representing sequences, notably protein families. Arguably,

we both believe and observe in our experiments that the

overall performance of the kernels proposed in this paper

does not rely so much on the individual ability of such

distributions to model specific families of sequences, but

rather on their overall efficiency to extract features out of

strings.

3.1. Framework and notations

Starting with basic notations and definitions, let E be a

finite set of size d called the alphabet. In our experiments, E

will be the 20 letters alphabet of amino-acids. For a given

depth D2N corresponding to the maximal memory of our

Markovian models, we write E�
D for the set of strings of E of

length smaller or equal to D, i.e. E�
D ZgD

iZ0Ei, which

includes, the empty word. We introduce

XZgN
nZ0ðE

D !EÞn, the set on which we choose to define

our kernel. Observe that we do not define directly the kernel

on the set of finite-length sequences, but rather in a slightly

different framework which stresses the fact that we are

chiefly interested in the local behaviour of the sequence.

Indeed, we see sequences as finite sets of (context, letter)

couples, where the context is a D-letters long subsequence

of the initial sequence and the letter is the element next to it.

This transformation is justified by the fact that we consider

Markovian models with a memory limited to D letters, and

is equivalent to the information contained by the spectrum

of order DC1 of a string. An element X 2X can, therefore,

be written as XZ fðxi
c; x

i
lÞgiZ1;.;NX

where NX is the

cardinality of X, xi
c 2ED and xi

l 2E for all 1%i%NX. By

considering strings as collections of transitions (or

equivalently substrings of length DC1) we do not only

follow previous approaches such as (Ben-hur & Brutlag,

2003; Christina Leslie et al., 2002; Christina Leslie et al.,

2003) but also refer to a recent framework in kernel design

(Marco Cuturi, Kenji Fukumizu, & Jean philippe Vert,

2005; Cuturi & Vert, 2005; Risi Kondor & Tony Jebara,

2003) which aims at computing kernels on compound

objects (such as long strings) as kernels for collections of

smaller components (DC1-mers in this case).

3.2. Context-tree models

Context-tree distributions require the definition of a

complete suffix dictionary (c.s.d) D. A c.s.d is a finite set of

words of E�
D such that any left-infinite sequence has a unique

suffix in D, but no word in D has a suffix in D. We write

LðDÞ for the length of the longest word contained in D and

FD for the set of c.s.d D that satisfy LðDÞ%D. We note that
c.s.d are in correspondence with suffix trees based on E as

illustrated in Fig. 1. Once this dictionary D or the equivalent

suffix tree structure is set, a distribution on X can be defined

by attaching a multinomial distribution1 qs2Sd to each

word s of D. Indeed, through the family of parameters qZ
ðqsÞs2D we define a conditional distribution on X by the

following equation

PD;qðXÞ Z
YNX

iZ1

qDðxi
cÞ
ðxi

lÞ; (4)

where for any word m in ED, DðmÞ is the unique suffix of m

in D. Note that Markov chains are a simple case of context-

tree distributions when the c.s.d. is set to ED. Conversely a

context-tree distribution D can be easily expressed as a

Markov chain by assigning the transition parameter qs to all

the contexts in ED which admit s as their unique suffix in D.

Context-trees can thus be seen as an alternative parameter-

ization and a handier representation of Markov chains,

where the importance of some suffixes is highlighted by

developing further or stopping the tree expansion in

branches which have more or less significance in the

generation of our string. We present in Fig. 1, an example,

where the alphabet has been set to EZ{A,B,C} and the

maximal depth D to 3. We write PD for

fPD;q : D2FD; q2QDg, the set of context-tree distri-

butions of depth D.
3.3. Prior distributions on context-tree models

We define in this section priors on the family of

distributions PD introduced in Section 3.2, following the
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Fig. 2. Branching-process generation of the example shown in Fig. 1 with a

depth DZ3. The prior value for that tree is 33(1K3)4.
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framework set in Eq. (3). Namely, we propose a prior

probability pðD; dqÞ on PD to finalize the definition of the

family of kernels presented in this paper, which we name

context-tree kernels. Note that we use and adapt the priors

proposed by (Willems et al., 1995) to our computation to

ensure the computation feasibility of the proposed kernels.

The prior probability pðD; dqÞ on PD factorizes as

pðD; dqÞZpðDÞpðdqjDÞ, two terms which are defined as

follows.

3.3.1. Prior on the tree structure

The set FD of complete suffix dictionaries is

equivalent to the set of complete d-ary trees of depth

smaller than D, namely the set of trees where each node

has either d sons or none, up to nodes of depth D which

can only be leaves. Following (Willems et al., 1995), we

define a simple probability pD on the set FD of trees

that is the direct translation of an intuitive random

generation of trees stopped at depth D. Starting from the

root, the tree generation process follows recursively the

following rule: up to depth DK1, each node has

probability 3 of giving birth to d children, and

probability 1K3 of having no children that is probability

1K3 of becoming a leaf; if the node is however located

at depth D of the tree, it becomes automatically a leaf

with no successors. In mathematical terms, this defines a

branching process on d-ary trees, truncated at depth D.

The typical outcome of this generation is completely

parameterized by 3, since a low value will favour short-

depth trees while values closer to 1 will yield fully

grown trees of depth D up to the case where 3Z1 and

only the full tree of depth D is considered. If we denote

by Do the set of all strict suffixes (corresponding to

inner nodes of the tree) of elements of D, the

probability of a tree is given by:

pDðDÞ Z
Y

s2D+

3
Y
s2D
lðsÞ!D

ð1K3Þ Z 3jDjK1=dK1ð1K3Þcardfs2DjlðsÞ!Dg:

(5)

This probability is illustrated with the case of the tree

shown in Fig. 2, with a prior value for that example of

33(1K3)4.

3.3.2. Priors on multinomial parameters

For a given tree D, we now define a prior on the

family of multinomial parameters QD Z ðSdÞ
D which

fully characterizes a context-tree distribution based on a

dictionary of suffixes D. We assume an independent

prior among multinomials attached to each of those

suffixes as

pðdqjDÞ Z
Y
s2D

uðdqsÞ;

where u is a prior distribution on the simplex Sd.

Following (Willems et al., 1995), a simple choice is to
make use of Dirichlet priors

ubðdqÞ Z
1ffiffiffi
d

p

G
Pd
iZ1

bi

� �
Qd
iZ1

GðbiÞ

Yd

iZ1

q
biK1
i lðdqÞ;

where l is Lebesgue’s measure and bZ(bi)iZ1,.,d is the

parameter of the Dirichlet distribution. The parameter b

incorporates all the prior belief we have on the

distribution of the alphabet. It can be either tuned

based on empirical data or chosen having theoretical

considerations in mind. A natural choice in the latter

case is to use Jeffrey’s prior (Amari & Nagaoka, 2001)

also known as the Krichevski–Trofimov prior (Willems

et al., 1995) and set biZ1/2 for 1%i%d. Alternative

choices, such as Laplace’s successor rule (biZ1) or the

Schurmann–Grassberger estimate (biZ1/d) have been

advocated in the literature and will also be explored in

the experimental section of this work, taking into

account discussions presented in (Nemenman, Shafee,

& Bialek, 2002) for instance. Furthermore, the use of a

simple Dirichlet prior can be extended to additive

mixtures of Dirichlet priors since the latter have been

shown to incorporate more efficiently information on the

distributions of amino-acids (Brown, Hughey, Krogh,

Mian, Sjölander, & Haussler, 1993). We propose to

include such priors in the construction of our kernel and

extend the computational framework of the CTW by

doing so. An additive mixture of n Dirichlet distributions

is defined by a family of n Dirichlet parameters

b(1),.,b(n) and n weights g(1),.,g(n) (with
Pn
kZ1

gðkÞZ1)

to yield the prior:

ug;bðdqsÞ Z
Xn

kZ1

gðkÞubðkÞ ðdqsÞ: (6)
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3.4. Triple mixture context-tree kernel

Combining the definition of the kernel of Eq. (3) with the

definition of the context-tree model distributions in Eq. (4)

and of the priors on the set of distributions of Eqs. (5) and

(6), we obtain the following expression for the context-tree

kernel:

ksðX;YÞ Z
X

D2FD

pDðDÞ

ð
QD

PD;qðXÞ
s=NX PD;qðYÞ

s=NY

!
Y
s2D

Xn

kZ1

gðkÞubðkÞ ðdqsÞ

 !
:

(7)

We observe that Eq. (7) involves three summations

respectively over the trees, the Dirichlet components used in

our additive mixtures, and the multinomial parameters over

which a Bayesian averaging is performed. This generalizes

the double mixture performed in (Willems et al., 1995) in

the context of sequence compression by adding a mixture of

Dirichlet priors.
4. Kernel implementation

As pointed out in the introduction, the models and

priors selected to define the mutual information kernel of
Fig. 3. CTW calculation tree for two binary strings XZ0111 and YZ10101, with a

considered as sets of weighted transitions XZ{(01,1),(11,1)} and YZ{(10,1),(10
Eq. (7) may not fit in the best way the natural process

which generates the considered sequences. Some distri-

butions favored by these priors may not even correspond

to the ones that are frequently observed in sequences

generated by the natural phenomenon. While this may

already seem arguably not so important in the context of

this paper (which highlights feature extraction as opposed

to parameter estimation), we also advocate such choices

having in mind they yield an efficient computation of the

value of Eq. (7).

For r 2N, and bZ ðbiÞ1%i%r 2ðRC�Þr and aZ ðaiÞ1%i%r

2ðRCÞr we write Gb(a) for

GbðaÞ
def
ð
Sr

Yr

iZ1

q
ai

i ubðdqÞ Z
Gðb$ÞQr

iZ1

GðbiÞ

Qr
iZ1

Gðai CbiÞ

Gða$ Cb$Þ
;

where G is the Gamma function, Sr the r-dimensional

simplex, b$ Z
Pr
iZ1

bi, and a$ Z
Pr
iZ1

ai. The quantity Gb(a)

corresponds to the averaging of the multinomial likelihood

Pq(a) under a Dirichlet prior of parameter b when q spans Sr.

The computation of the context-tree kernel on two strings

can be divided into two phases for more clarity, which can

be implemented alongside each other. A look at Fig. 3 may

give a better intuition on the computations actually

performed by the CTW algorithm.
depth DZ2, sZ1 and an arbitrary Dirichlet parameter b. The two string are

,1),(01,0)}, and the resulting kernel value K(X,Y) is Y:.
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4.1. Defining counters

The first step of the algorithm is to compute for m2ED

the counter

rmðXÞ
def XNX

iZ1

ðxi
c Z mÞ;

which simply counts the occurrences of m within contexts

enumerated in X. For contexts present in the string X that is

words m such that rm(X)O0, the empirical behaviour of

transitions can be estimated as:

q̂m;eðXÞ
def

PNX

iZ1

ðxi
c Z m; xi

l Z eÞ

rmðXÞ
:

q̂m;e summarizes the empirical probability of the

appearance of letter e after m has been observed. We finally

define a last counter:

am;eðX; YÞ
def rmðXÞ

NX

q̂m;eðXÞC
rmðYÞ

NY

q̂m;eðYÞ:

am,e(X,Y) is a weighted average of the transitions encoun-

tered in X and Y. Once those counters are computed on

visited contexts, which are up to NXCNY, the following

downward recursion on the length of the string m (when m

spans all strict suffixes of visited contexts) computes

equivalent counters for shorter suffixes:

rmðXÞ Z
X
f2E

rf $mðXÞ;

q̂m;eðXÞ Z

P
f2E rf $mðXÞq̂f $m;eðXÞ

rmðXÞ
;

am;eðX; YÞ Z
X
f2E

af $m;eðX; YÞ:

So far, the memory needed to store the information on

which the kernel will be computed (essentially counters a

which can be stored in the leaves of a suffix tree generated

while scanning only visited contexts) is linear with respect

to the size of our strings and is loosely upper-bounded by

D(NXCNY).
4.2. Recursive computation of the triple mixture

We can now attach to each m for which we have

calculated the previous counters the value

KmðX;YÞ Z
Xn

kZ1

gðkÞGbðkÞ ðs$am;eðX;YÞe2EÞ;

which computes two mixtures, the first being a continuous

Bayesian averaging on the possible values of q weighted by

a given Dirichlet prior and the second being a discrete

weighted summation using the weighted Dirichlet
distributions provided by the mixture (g(k), b(k))kZ1,.,n. A

numerical approximation of GbðkÞ can be used in practice,

through Lanczos’ approximation of the ln G function for

instance. By defining the quantity Ym(X,Y), which is also

attached to each visited word m and computed recursively

through

YmðX;YÞ

Z
KmðX;YÞ; if lðmÞZ D;

ð1K3ÞKmðX;YÞC3
Q

e2E Ye:mðX;YÞ; if lðmÞ!D:

(

we actually perform the third mixture over all possible tree

structures by taking into account the branching probability

3. Indeed, we finally have, recalling : is the empty word,

that:

ksðX;YÞZ Y:ðX;YÞ: (8)

Proof. For a c.s.d model ðD;qÞ and two sets of transitions

XZðxi
c;x

i
lÞiZ1%NX

and Y Zðyi
c;y

i
lÞ1%i%NY

we have that

PD;qðXÞ
s=NX PD;qðYÞ

s=NY Z
Y
s2D

Y
e2E

qsðeÞ
sas;eðX;YÞ

The latter product of likelihoods can thus be calculated

using only counter a, and we further have that

ð
QD

PD;qðXÞ
s=NX PD;qðYÞ

s=NY

Y
s2D

Xn

kZ1

gðkÞubðkÞ ðdqsÞ

 !

Z

ð
QD

Y
s2D

Y
e2E

qsðeÞ
sas;eðX;YÞ

Xn

kZ1

gðkÞubðkÞ ðdqsÞ

 !" #

Z
Y
s2D

Xn

kZ1

g
ðkÞ

ð
Sd

Y
e2E

qsðeÞ
sas;eðX;YÞubðkÞ ðdqsÞ

Z
Y
s2D

Xn

kZ1

gðkÞGbðkÞ ðsðas;eðX;YÞÞe2EÞZ
Y
s2D

KsðX;YÞ;

where we have used Fubini’s theorem to factorize the

integral in the second line. Having in mind Eq. (7), we have

thus proved that ksðX;YÞZ
P

D2FD
pDðDÞ

Q
s2D KsðX;YÞ.

The second part of the proof is identical to the one given in

(Willems et al., 1995), and developed in (Catoni, 2001)

whose recursive treatment we adopt. Let us prove by

induction, with respect to successively decreasing lengths of

m (i.e., over words m such that l(m)ZD,.,0), that

YmðX;YÞZ
X

D2FDKlðmÞ

pDKlðmÞðDÞ
Y
s2D

Ks$mðX;YÞ; (9)

where pDKl(m) is the distribution of a tree according to the

branching process prior previously presented stopped at

level DKl(m). We notice that the set FDKlðmÞ of c.s.ds of

depth DKl(m) can be further divided into



ðX;YÞ

Ks$y$mðX;YÞ

Þ : y2E; s2DygÞ
Y

ðs;yÞ2Dy!E

Ks$y$mðX;YÞ
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FDKlðmÞ Z ffðs; yÞ

: y2E; s2Dyg;Dy 2FDKlðmÞK1ggff:gg;

where we have that:

pDKlðmÞðfðs;yÞ : y2E; s2DygÞZ 3
Y
y2E

pDKlðmÞK1ðDyÞ;

pDKlðmÞðf:gÞZ 1K3:

Starting our recursion with words of length dZD, where

Eq. (9) is valid by the recursive definition of Y, we assume

Eq. (9) to be valid with words of length d and prove that it

holds for words of length dK1. Given m such that l(m)Z
dK1, we can write:

YmðX;YÞZ ð1K3ÞKmðX;YÞC3
Y
y2E

Yy$mðX;YÞ

Z ð1K3ÞKmðX;YÞC3
Y
y2E

X
D2FDKd

pDKdðDÞ
Y
s2D

Ks$y$m

Z ð1K3ÞKmðX;YÞC3
X

ðDyÞ2ðFDKdÞ
E

Y
y2E

pDKdðDyÞ
Y

s2Dy

Z pDKlðmÞðf:gÞKmðX;YÞC
X

ðDyÞ2ðFDKdÞ
E

pDKlðmÞðfðs;y

Z
X

D2FDKd

pDKdðDÞ
Y
s2D

Ks$mðX;YÞ

Applying Eq. (9) to the case where mZ: we finally

prove Eq. (8). ,

As previously recalled, the computation of the counters

has a linear cost in time and memory with respect to D(NXC
NY). As only counters that correspond to visited suffixes of X

and Y are created, recursive computation of Ym is also linear

in time and space (the values Ym for suffixes m not

encountered, such that rm(X)Zrm(Y)Z0, being equal to 1).

As a final result, the computation of the kernel is linear in

time and space with respect to D(NXCNY).
5. Source coding and compression interpretation

There is a very classical duality between source

distributions (a random model to generate infinite

sequences) and sequence compression (Cover & Thomas,

1991). Roughly speaking, if a finite sequence X has a

probability P(X) under a source distribution P, then one can

design a binary code to represent X by r(X)ZKlog2 P(X)

bits, up to 2 bits, using for example arithmetic coding. In

this section, we provide an interpretation of the context-tree

kernel in terms of information theory and compression, and

highlight its differences with the spectrum kernel.

When sequences are generated by an unknown source P,

it is classical to form a coding source distribution by

averaging several a priori sources. Under reasonable

assumptions, one can design this way universal codes, in
the sense that the average length of the codes be almost as

short as if P was known and the best source was used. As an

example, the context-tree weighting (CTW) algorithm

(Willems et al., 1995) defines a coding probability Pp for

sequences by averaging source distributions defined by

context-trees as follows:

PpðXÞ
def X

D2FD

pðDÞ

ð
QD

PD;qðXÞ
Y
s2D

ubðdqsÞ; (10)

where ub is the Krichevski–Trofimov prior. Up to the

mixture of Dirichlet and the exponents (used to renormalize

the probabilities with respect to the sequences’ lengths), we

therefore see, by comparing (10) with (7), that the context-
tree kernel between two sequences can be roughly

interpreted as the probability under Pp of the concatenation

of the two sequences. Our kernel actually considers a

sequence as a list of weighted empirical distributions

fðrm; q̂mÞgm2ED 2ðRC!SdÞ
ED

which summarizes the local

behaviour of its letter transitions. These coordinates, whose

information is equivalent to the one contained in the

spectrum of the sequence, can be used to compute the

likelihood of a specific context-tree distribution ðD; qÞ on

such a set by deriving fðrs; q̂sÞ; s2Dg recursively, as in the

previous computation.

We write kl(qkq 0) for the Kullback–Leibler divergence

between q and q 0, two multinomial parameters of size d, i.e.

ðqjjq0ÞZ
Pd
iZ1

qi lnðqi=q
0
iÞ. We also note h(q) the entropy of q,

i.e. hðqÞZK
Pd
iZ1

qi ln qi. We use the following identity on q

and q 0:

Yd

iZ1

q
q0

i

i Z exp
Xd

iZ1

q0
i ln qi Z exp

Xd

iZ1

q0
i ln

qi

q0
i

C
Xd

iZ1

q0
i ln q0

i

Z expðKhðq0ÞKklðq0jjqÞÞ;

to reformulate the mixture coding probability Pp on c

in the context of the context-tree kernel computation.

Indeed, following the priors previously defined on PD,

the following formula expresses the value of the

coding probability of a given string through its counters
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r and q̂:

Ppðr; q̂Þ Z
X

D2FD

pðDÞ
Y
s2D

eKsrshðq̂xÞ

ð
Sd

eKsrsklðq̂sjjqÞug;bðdqÞ:

We write rp for Kln Pp, r̂ðXÞ for the normalized

counters (1/NX) r(X) and introduce the following

function tp of two strings:

tpðX;YÞ Z
1

2
½rpðr̂ðXÞ; q̂ðXÞÞCrpðr̂ðYÞ; q̂ðYÞÞ


Krp

r̂ðXÞC r̂ðYÞ

2
;
q̂ðXÞC q̂ðYÞ

2

 !
: (11)

Finally we have, by defining the renormalized kernel

~ks as

~ksðX;YÞ Z ksðX; YÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksðX;XÞksðY ;YÞ

p
;

that

~ksðX;YÞ Z eKtpðX;YÞ:

We note here that the function tp can be interpreted in the

light of semigroup kernels on sets of components or measures,

as proposed in (Marco Cuturi, 2005; Cuturi & Vert, 2005). A

semigroup is roughly a set with an associative composition

law, which in our case is just the addition of counters and

estimated transitions as in Eq. (11). What the structure of tp
highlights is that the similarity computed by context-tree

kernels between two strings, and more precisely the sequences

of counters indexed on ED that describe them, is just a function

of their sum. This is opposed to the computations led by the

spectrum kernel, which considers products on those counters

(namely a linear-dot product on those vectors of counters).

The whole family of context-tree kernels are hence

defined through a prior belief on the behaviour of

sequences of counters (tuned through a selection of specific

priors), which is first applied to the sequences individually,

ðr̂ðXÞ; q̂ðXÞÞ and ðr̂ðYÞ; q̂ðYÞÞ, before evaluating it on their

mean: ððr̂ðXÞC r̂ðYÞÞ=2; ðq̂ðXÞC q̂ðYÞÞ=2Þ:

This formulation makes the link with compression more

precise, where instead of concatenating strings we rather

perform counter averaging. This viewpoint can also bring

forward a geometrical perspective on the actual compu-

tation which is performed. The choice of a compression

algorithm (namely a selection of priors) defines the shape of

the function rp on the whole space of counters, and the

similarity between two sequences is measured through the

difference between three evaluations of rp, first taken on

the two points taken apart and then on their average, which

is directly related to the convexity of rp.
6. Experiments

6.1. Protein domain homology detection benchmark

We report results concerning the performance of the

context-tree family of kernels on a benchmark experiment

that tests the capacity of SVMs to detect remote homologies

between protein domains. This is simulated by recognizing

domains that are in the same SCOP (Structural Classifi-

cation of Proteins (Hubbard, Murzin, Brenner, & Chothia,

1997), ver. 1.53) superfamily, but not in the same family,

using the procedure described in (Tommi Jaakkola et al.,

2000). We used the files compiled by the authors of (Noble

& Liao, 2002), which consist in 4352 sequences extracted

from the Astral database of protein domains. For each of the

54 tested families, the protein domains within the family

where considered positive test examples while protein

domains within the superfamily but outside the family were

considered as positive training examples. This results in 54

classification experiments with at least 10 positive training

examples and five positive test examples. Negative

examples were selected outside of the positive sequences’

fold with a similar ratio. Following previous studies of this

benchmark, we computed the Receiving Operator Charac-

teristic (ROC, (Gribskov & Robinson, 1996)), ROC50 and

Rate of False Positives (RFP) of each of the classification

performed by a SVM based on various parameter settings of

the context-tree kernel. The ROC score (or AUC, Area

Under the ROC Curve) is the normalized area under the

curve which plots the number of true positives as a function

of false positives; the ROC50 is the area under the ROC

curve up to 50 false positives while the median RFP is the

number of false positives scoring as high or better than the

median scoring true positives. We average those criterions

on the 54 experiments to provide an overall measure of the

performance of the considered kernels on this task.
6.2. Parameter tuning and comparison with alternative

string kernels

Let us now recall, along with the formula of the context-

tree kernel, the different parameters which need to be set to

control the output of the family of context-tree kernels:

ksðX;YÞ Z
X

D2FD

pDðDÞ

ð
QD

PD;qðXÞ
s=NX PD;qðYÞ

s=NY

!
Y
s2D

Xn

kZ1

gðkÞubðkÞ ðdqsÞ

 !
:

† s represents the width taken by the probabilities used to

compute the kernel, allowing us to control the range of

values appearing in Gram matrices. Large values of s

will favor diagonal-dominant matrices while lower

values will tend to create Gram matrices of similar
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elements. We thus tuned these values empirically, so that

none of the two previous problematic cases appears.

Using a s value between 1 and 5 typically ensures this

and we usually set sZ2.

† The branching-process probability pD is parameterized

by 3, which controls the typical amount of suffixes

numbered in dictionaries in relation with D, their

maximal depth. A sound choice for 3, as well as being

validated by experiments and used in the original paper

(Willems et al., 1995) is to set 3Z1/d, as this keeps a

good balance between small trees which might capture

simple interactions and larger trees which might detect

longer range interactions.

† The depth parameter D controls the maximal memory

of the Markovian models. This parameter influences

the complexity of our features extractors and adds

computational time to most calculations. The sub-

mitted sequences have typical lengths of roughly two

hundred amino-acids. Hence lengths set between 2 and

4 for the substrings (that is contexts of length 1–3)

should suffice to capture most of the available

information, following the empirical observation of

(Ming Li et al., 2004) that the logarithm of the average

length of the sequences suffices as a context length to

capture most of the letter-to-letter transition infor-

mation. Those lengths were also shown to give the best

performance on the datasets.

† Finally, different Dirichlet priors but also families of

Dirichlet mixtures (g(k),b(k))1%k%n can be considered

to compute mixtures at the level of each node. We

tested three popular uniform priors, namely the

Jeffrey’s prior (biZ1/2) as used in (Willems et al.,

1995), the Laplace successor rule (biZ1) and the

Schurmann–Grassberger estimate (biZ1/d). The first

two choices yielded equivalently good results in

practice and better than the third one. We also tested

mixtures of Dirichlet priors, hoping they would prove

more accurate in comparing biological strings. We

considered 3, 9 and 20 components additive mixtures

(respectively HYDRO-CONS.3COMP; BYST-4.5-0-3.9COMP;

RECODE3.20COMP, FOURNIER20.COMP and DIST20.COMP)

which can be downloaded from a Dirichlet mixture

repository.2 These mixtures gave disappointing results

when averaged over the 54 families (considering ROC

average this means a performance of roughly 87–88%)

but produced somehow different results for some

families which seemed hard to classify through other

methods. However, we interpret the fact that those

families of Dirichlet mixtures did not improve overall

accuracy as a form of overfitting. Again, while this

biological knowledge might improve the selection of a

specific model to fit sequences (notably Hidden

Markov Models), it does not seem to work in our
2 http://www.cse.ucsc.edu/research/compbio/dirichlets/
framework where we only use statistical models as

feature extraction tools.

Up to the poor performances of context-tree kernels

defined with Dirichlet mixtures, the few experiments we

led on different parameters yielded no surprises and

favored ranges of parameters which were theoretically

motivated, namely short depths, a branching process prior

of roughly 1/d and uniform Dirichlet priors (either the

Laplace of the Krichevski–Trofimov rule). Note further

that the variety of all 54 protein families used in the

experiment prevents overfitting since an increase in

performance over certain families usually implies a

decrease in other ones. We compare the performance of

context-tree kernels with other string kernels, where the

performances we report were computed according to the

parameters known to perform in a good way on that

dataset and proposed by the respective authors of those

kernels. We present here the best mismatch kernel (5,1)

reported in (Christina Leslie et al., 2003), which can also

be computed in linear time and space, but also

more greedy algorithms such as the pairwise kernel

(Liao & Noble, 2002) and the two local alignment kernels

(LA-Eig, LA-Ekm) presented in (Jean-Philippe Vert et al.,

2004), which, as opposed to the context-tree Kernel, take

into account relevant information known to be of capital

importance for biological sequences (such as gaps,

deletions or mutations of amino-acids). We also report

the results of the spectrum kernel (Christina Leslie et al.,

2002) with depths 3 and 4 and show that based on the

same information (D-grams) the context-tree kernel

clearly outperforms the latter. The classification was led

using the Gist (version 2.1.1) implementation of SVM,3

where all parameters specific to SVM optimization were

set to default values (elementary attempts to tune the

latter parameters did not yield significative improvements

in accuracy).
6.3. Mean performances and curves

We present in Fig. 4 the performance of all previously

quoted kernels, along with an implementation of the

context-tree kernel where sZ2, DZ4, 3Z1/20 and where

a uniform Jeffrey prior was used. The results show that the

CTK performs roughly better than the mismatch kernel and

overall similarly to the pairwise kernel, notably in regions

where classification becomes more difficult and ROC scores

become lower for all techniques. Except in those regions, it

is outperformed by both versions of the local-alignment

kernels. The CTK is computed in linear time and without

any biological knowledge, a property exclusively shared

with the spectrum kernel whose curve in the figure is

significantly below than that of the CTK (only results
3 http://microarray.cpmc.columbia.edu/gist/download.html

http://www.cse.ucsc.edu/research/compbio/dirichlets/
http://microarray.cpmc.columbia.edu/gist/download.html
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obtained for the spectrum with a depth 3 have been

represented in the plot).

Table 1 summarizes the three main statistics used to

compare performances over the studied benchmark between

context-tree kernels and all other kernels. In this table,

context-tree kernels perform (relatively to other kernels)

better in terms of ROC score than in terms of ROC50 and

RFP, and we have no explanation for this. As can be easily

deduced from the previous figure, the context-tree kernel

clearly outperforms the spectrum kernel while using exactly

the same information. In the general case, where only the

spectrum information of a string is available, the context-

tree kernel may hence prove more useful than the simple

spectrum kernel.

Additionally, we report that using the 20-components

Dirichlet mixture fournier20 with usual parameters (DZ4
Table 1

Mean results for ROC, ROC50 and RFP as produced over the 54 families by

all compared kernels, where CTK denotes the context-tree kernel set with

sZ2, 3Z1/20, Jeffrey’s prior and depth DZ4

Method ROC ROC50 RFP

CTK 0.894 0.371 0.0869

Spectrum 3 0.781 0.277 –

Spectrum 4 0.716 0.208 –

Mismatch 5, 1 0.872 0.400 0.0837

Pairwise 0.894 0.461 0.0846

LA-ekm 0.934 0.663 0.0525

LA-eig 0.923 0.646 0.0552
and 3Z0.05) produced the triplet of means (0.887, 0.366,

0.096). Simpler mixtures with less components did not

yield a substantial increase in performance either and we

hence did not find them useful in the context of this

experiment since they add computational cost. However,

we observed important variations on the performance for

each family with respect to other context-tree kernels

which only use uniform priors, while their overall

performance was similar or slightly worse. This might

be interpreted as some complementary between the two

kinds of kernels and may be a subject of future research,

through a linear combination of kernels for instance.

Finally, we present in Table 2 a few results for

meaningful settings of the context-tree kernels using

Jeffrey’s prior. These results show that an increase in the

complexity of the models used to perform the Bayesian

mixture does not yield better results in practice.

Surprisingly, a context-tree kernel of depth 1 suffices to

provide good results, while more complex models which

require far more computational cost give relatively poor

results. These observations show once more that in the

context of mutual information kernels, the relevance of

distributions to model the data does not seem to be an

important criterion.
7. Conclusion

We introduced a novel class of kernels for sequences that

are fast to compute while only using the spectrum of the



Table 2

From short trees to long and dense trees: mean results of ROC, ROC50 and RFP scores for different settings of the branching process prior and of the length of

the models selected

Parameters (with Jeffrey’s prior and sZ2) ROC ROC50 RFP

DZ1, 3Z1/20 0.886 0.373 0.0796

DZ2, 3Z1/20 0.892 0.391 0.0857

DZ3, 3Z1/20 0.895 0.385 0.0865

DZ4, 3Z1/20 0.894 0.371 0.0869

DZ4, 3Z1/4 0.893 0.378 0.0857

DZ4, 3Z1/2 0.889 0.367 0.0877

DZ4, 3Z1 0.872 0.326 0.101

DZ6, 3Z1/20 0.889 0.362 0.0923

DZ8, 3Z1/20 0.885 0.355 0.0986

Note that when only the complete tree is selected (3Z1) the performance decreases significantly. In that case, namely when no mixture is performed on the

class of models, the context-tree computation resembles the simpler computation performed by the spectrum kernel. Note also that a good performance is

reached when the context-tree only uses contexts of length 1 (namely Markov chains of depth 1), which shows that models should be selected to extract features

and not to model sequences, a hint which is further confirmed by the fact that long trees do not perform very well despite their better ability to absorb more

knowledge about the strings’ transitions.
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submitted strings. The kernel is a mutual information kernel

based on a family of context-tree models, and makes a link

between the comparison of two string and the ability of

universal coding algorithms to compress them when taken

together. On a benchmark experiment of remote homology

detection it performs at a level close to state-of-the-art levels

reached by kernels which involve heavier computational

cost and make use of biological knowledge. The context-

tree kernels clearly outperform the spectrum kernel on the

same benchmark while using exactly the same information.

The context-tree kernel, whose computation is inspired by

universal coding theory, may thus share one of the qualities

of the latter algorithms, which is to appear as a sound prior

choice to explore similarities between sequences for whom

little knowledge is available and at a reasonable compu-

tational cost.
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