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Abstract

This paper introduces a new class of algorithms for optimization
problems involving optimal transportation over geometric domains.
Our main contribution is to show that optimal transportation can be
made tractable over large domains used in graphics, such as images
and triangle meshes, improving performance by orders of magnitude
compared to previous work. To this end, we approximate optimal
transportation distances using entropic regularization. The result-
ing objective contains a geodesic distance-based kernel that can
be approximated with the heat kernel. This approach leads to sim-
ple iterative numerical schemes with linear convergence, in which
each iteration only requires Gaussian convolution or the solution
of a sparse, pre-factored linear system. We demonstrate the versa-
tility and efficiency of our method on tasks including reflectance
interpolation, color transfer, and geometry processing.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry & Object Modeling—Geometric algorithms, languages, &
systems

Keywords: Optimal transportation, Wasserstein distances, entropy,
displacement interpolation.

1 Introduction

Probability distributions are ubiquitous objects in computer graphics,
used to encapsulate possibly uncertain information associated with
arbitrary geometric domains. Examples include image histograms,
geometric features, relaxations of correspondence maps, and even
physical quantities like BRDFs. To compare these objects, it is
important to define an adequate notion of proximity or coverage
quantifying the discrepancy or, equivalently, similarity between

distributions. These computations are commonly posed and analyzed
within the theory of optimal transportation.

The prototypical problem in optimal transportation is the evaluation
of Wasserstein (also known as Earth Mover’s) distances between
distributions [Villani 2003; Rubner et al. 2000]. These distances
quantify the geometric discrepancy between two distributions by
measuring the minimal amount of “work” needed to move all the
mass contained in one distribution onto the other. Recent devel-
opments show that incorporating these distances into optimization
objectives yields powerful tools for manipulating distributions for
tasks like density interpolation, barycenter computation, and corre-
spondence estimation. As a simple example, suppose we are given
two delta functions δx, δy centered at x, y ∈ R

2. While the Eu-
clidean average (δx+δy)/2 is bimodal at x and y, solving for the
distribution that minimizes the sum of squared two-Wasserstein dis-
tances to δx and δy is a Dirac at the midpoint (x+y)/2, thus offering
a geometric notion of the midpoint of two distributions.

A limiting factor in optimal transportation is the complexity of the
underlying minimization problem. The usual linear program de-
scribing optimal transportation is related to minimum-cost matching,
with a quadratic number of variables and time complexity scaling at
least cubically in the size of the domain [Burkard and Çela 1999].
This poor complexity is largely due to the use of coupling variables
representing the amount of mass transported between every pair
of samples. Hence, existing large-scale methods often resort to
aggressive or ad-hoc approximations that can lose connections to
transportation theory or compensate with alternative formulations
that apply only to restricted cases.

This paper introduces a fast, scalable numerical framework for opti-
mal transportation over geometric domains. Our work draws insight
from recent advances in machine learning approximating optimal
transportation distances using entropic regularization [Cuturi 2013].
We adapt this approach to continuous domains using faithful finite
elements discretizations of the corresponding optimization prob-
lems. This yields a novel approach to optimal transportation without
computing or storing pairwise distances on arbitrary shapes.

After discretization, our algorithm for approximating Wasserstein
distances becomes a simple iterative scheme with linear convergence,
whose iterations require convolution of vectors against discrete dif-
fusion kernels—hence the name convolutional Wasserstein distance.
We also leverage our framework to design methods for interpolation
between distributions, computation of weighted barycenters of sets
of distributions, and more complex distribution-valued correspon-



dence problems. Each of these problems is solved with straightfor-
ward iterative methods scaling linearly in the size of the data and
domain. We demonstrate the versatility of our methods with exam-
ples in image processing, shape analysis, and BRDF interpolation.

2 Related Work

The original formulation of optimal transportation, introduced
in [Kantorovich 1942], involves a linear program connecting a pair
of distributions. The cost of moving density from one point to an-
other is specified using a fixed matrix of pairwise costs. As outlined
in [Burkard et al. 2009], a variety of linear program solvers and ded-
icated combinatorial schemes have been devised for this problem.
These methods scale up to a few thousand variables and were applied
to graphics applications in [Bonneel et al. 2011] and in [Lipman
and Daubechies 2011]. They do not scale to large domains such
as images with millions of pixels, however, and are not tailored for
advanced problems like barycenter computation.

Specific instances of optimal transportation can be efficiently solved
by leveraging tools from computational geometry. The transporta-
tion cost from continuous to pointwise measures, for instance,
can be computed either via multiscale algorithms [Mérigot 2011;
Schwartzburg et al. 2014] or through Newton iterations on Euclidean
spaces [de Goes et al. 2012; Zhao et al. 2013]. More recently, this
Newton-based approach for optimal transportation was extended to
discrete surfaces [de Goes et al. 2014]. Transportation distances
between point clouds and line segments also were approximated in
2D based on a triangulation tiling of the plane and greedy point-to-
segment clustering [de Goes et al. 2011].

Another line of work proposes a dynamical formulation for optimal
transportation with an additional time variable. For squared distance
costs, Benamou and Brenier [2000] compute transportation distances
by minimizing the cost of advecting one distribution to another in
time. For non-squared distance costs, Solomon et al. [2014a] solve
for transportation maps as the flow of a vector field whose divergence
matches the difference between the input densities.

Other methods use optimal transportation to aggregate and average
information from multiple densities. Examples include barycenter
computation [Agueh and Carlier 2011], density propagation over
graphs [Solomon et al. 2014b], and computation of “soft” correspon-
dence maps [Solomon et al. 2012]. These problems are typically
solved via a multi-marginal linear program [Agueh and Carlier 2011;
Kim and Pass 2013], which is infeasible for large-scale domains.
One work-around approaches the dual of the linear program using
L-BFGS with subgradient directions [Carlier et al. 2014], but this
strategy suffers from poor conditioning and noisy results.

Regularization provides a promising way to approximate solutions
of transportation problems. While interior point methods long have
used barrier functions to transform linear programs into strictly con-
vex problems, entropic regularizers in the particular case of optimal
transportation provide several key advantages outlined in [Cuturi
2013]. With entropic regularization, optimal transportation is solved
using an iterative scaling method known as the iterative proportional
fitting procedure (IPFP) or Sinkhorn-Knopp algorithm [Deming and
Stephan 1940; Sinkhorn 1967], which can be implemented in paral-
lel GPGPU architectures and used to compute e.g. the barycenter of
thousands of distributions [Cuturi and Doucet 2014].

Our work leverages the efficiency of iterative scaling methods for
entropy-regularized transport and related problems, principally [Cu-
turi 2013; Benamou et al. 2015]. By posing regularized transport
in continuous language, we couple the efficiency of these algo-
rithms with discretization on domains like surfaces and images. This
change is not simply notational but rather leads to much faster itera-

tion through connection to Gaussian kernels on images and the heat
kernel of a surface; these kernels can be evaluated without precom-
puting a matrix of pairwise distances. We demonstrate applications
of the resulting methods for large-scale transport on tasks relevant
to computer graphics applications.

3 Preliminaries

We begin with background on optimal transportation. We consider a
compact, connected Riemannian manifold M rescaled to have unit
volume and possibly with boundary, representing a domain like a
surface or image plane. We use d : M ×M → R+ to denote the
geodesic distance function, so d(x, y) is the shortest distance from x
to y along M . We use Prob(M) to indicate the space of probability
measures on M and Prob(M ×M) to refer to probability measures
on the product space of M with itself. To avoid confusion, we will
refer to elements µ0, µ1, ... ∈ Prob(M) as marginals and to joint
probabilities π0, π1, ... ∈ Prob(M ×M) as couplings.

3.1 Optimal Transportation

A source marginal µ0 can be transformed into a target marginal µ1

by means of a transportation plan π, a coupling in Prob(M×M)
describing the amount of mass π(x, y) to be displaced from µ0 at x
towards y to create µ1 in aggregate. Mass conservation laws impose
that such couplings are necessarily in the set

Π(µ0, µ1)
def.
={π ∈ Prob(M×M) :π(·,M) = µ0, π(M, ·) = µ1}.

The optimal transportation problem from µ0 to µ1 seeks a coupling
π ∈ Π(µ0, µ1) with minimal cost, computed as the integral of
squared distances d2 against π. Formally, the 2-Wasserstein distance
between µ0 and µ1 is thus defined as

W2(µ0, µ1)
def.
=

[

inf
π∈Π(µ0,µ1)

∫∫

M×M

d(x, y)2 dπ(x, y)

]1/2

. (1)

The 2-Wasserstein distance satisfies all metric axioms and has several
attractive properties—see [Villani 2003, §7] for details.

3.2 Kullback-Leibler Divergence

The modified transportation problems we consider involve quantities
from information theory, whose definitions we recall below. We refer
the reader to [Cover and Thomas 2006] for detailed discussions.

A coupling π is absolutely continuous with respect to the volume
measure when it admits a density function p, so that π(U) =
∫

U
p(x, y) dx dy , ∀U ⊆ M ×M . To simplify notation, we will

use π to indicate both the measure and its density.

The (differential) entropy of a coupling π on M×M is defined as
the concave energy

H(π)
def.
= −

∫∫

M×M

π(x, y) lnπ(x, y) dx dy. (2)

By definition, H(π) =−∞ when π is not absolutely continuous,
and H(π)=0 when π is a measure of uniform density π(x, y)≡1.

Given an absolutely continuous measure π ∈ Prob(M×M) and a
positive function K on M×M , we define the Kullback-Leibler (KL)
divergence between π and K as

KL(π|K)
def.
=

∫∫

M×M

π(x, y)

[

ln
π(x, y)

K(x, y)
− 1

]

dx dy. (3)



γ = 0 γ = 0.0001 γ = 0.001 γ = 0.01 γ = 0.1

Figure 2: Transportation plans with different values of γ, with 1D
quadratic costs; µ0, µ1 ∈ Prob([0, 1]) are shown on the axes.

4 Regularized Optimal Transportation

In this section, we present a modification of Wasserstein distances
suitable for computation on geometric domains. In our exposition,
we first assume that the pairwise distance function d(·, ·) is known
and then leverage heat kernels to alleviate this requirement.

4.1 Entropy-Regularized Wasserstein Distance

Following e.g. [Cuturi 2013; Benamou et al. 2015], we modify the
objective of the optimal transportation problem in (1) by adding
an entropy term H(π) promoting spread-out transportation plans π.
The entropy-regularized 2-Wasserstein distance is then defined as:

W2
2,γ(µ0, µ1)

def.
= inf

π∈Π

[
∫∫

M×M

d(x, y)2 π(x, y)dxdy − γH(π)

]

, (4)

where we have used the shorter notation Π for Π(µ0, µ1). This reg-
ularized version of optimal transport is often called the “Schrödinger
problem,” and we refer to [Léonard 2012] for discussion of its con-
nection to non-regularized transport, recovered as γ → 0.

When γ > 0, the solution π to (4) is an absolutely continuous
measure, since otherwise the entropy term is indefinite. The term
−H(π) also makes the objective strictly convex, and therefore a
unique minimizer exists. Fig. 2 illustrates couplings π obtained using
increasing values of γ, resulting in increasingly smooth solutions.

We can associate the distance d(·, ·) to a kernel Kγ of the form:

Kγ(x, y) = e−d(x,y)2/γ , d(x, y)2 = −γ lnKγ(x, y). (5)

By combining (3), (4) and (5) algebraically, the entropy-regularized
Wasserstein distance can be computed from the smallest KL diver-
gence from a coupling π ∈ Π to the kernel Kγ :

W2
2,γ(µ0, µ1) = γ

[

1 + min
π∈Π

KL(π|Kγ)

]

. (6)

This minimization is convex, due to the convexity of KL on the
first argument π, with linear equality constraints induced by the
marginals µ0 and µ1. As observed in the discrete case [Cuturi 2013;
Benamou et al. 2015], it provides a new interpretation for the regu-
larized transportation problem: the optimal plan π is the projection
of the distance-based kernel Kγ onto Π, enforcing marginals while
minimizing the loss of information quantified by KL divergence.

4.2 Wasserstein Distance via Heat Kernel

So far, our method requires a distance function d(·, ·) to construct
Kγ . This assumption is adequate for domains with analytical and
fast algorithms for convolution against Kγ , like the image plane.
It becomes cumbersome, however, for arbitrary manifolds, since
precomputing pairwise distances requires quadratic space and con-
siderable computation time. Instead, we propose an alternative to the
distance-based kernel Kγ making our method suitable for arbitrary
domains.

DefineHt(x, y) to be the heat kernel determining diffusion between
x, y ∈ M after time t; in particular, Ht solves the heat equation
∂tft = ∆ft with initial condition f0 through the map

ft(x) =

∫

M

f0(y)Ht(x, y) dy.

Similar to [Crane et al. 2013], we associate the heat kernel Ht to
the geodesic distance function d(·, ·) based on the Varadhan’s for-
mula [1967], which states that the distance d(x, y) can be recovered
by transferring heat from x to y over a short time interval:

d(x, y)2 = lim
t→0

[−2t lnHt(x, y)] . (7)

Setting t
def.
= γ/2 in (7), we approximate the kernel Kγ as:

Kγ(x, y) ≈ Hγ/2(x, y),

and, as an implication, we can replace the convolution of an arbitrary
function f against Kγ by the solution of the diffusion equation for a
time step t = γ/2 and with f as the initial condition. We thus denote
W2,Ht as the diffusion-based approximation ofW2

2,γ , i.e.:

W2
2,Hγ/2

(µ0, µ1)
def.
= γ

[

1 + min
π∈Π

KL(π|Hγ/2)

]

. (8)

Developing conditions for convergence ofW2
2,Hγ/2

as γ→ 0 is a

challenging topic for future research. Note that while derivatives
of distances from (7) can diverge near the cut locus [Malliavin
and Stroock 1996], distance values are valid everywhere on M
provided M is connected and compact; divergence of derivatives is
not problematic for our method.

Although W2,H and W2,γ are symmetric in µ0 and µ1, the self-
distancesW2,H(µ, µ) andW2

2,γ(µ, µ) are never exactly zero for a
given µ. We also observe that these values only satisfy the triangle
inequalities approximately, notably for small γ (see [Cuturi 2013,
Theorem 1]). Hence, as in [Crane et al. 2013], the regularized
quantities we manipulate are not distances, strictly speaking. These
approximations are, however, a very small price to pay to obtain
algorithms scaling near-linearly with the size of the mesh.

5 Convolutional Wasserstein Distance

We now detail our numerical framework to carry out regularized op-
timal transportation on discretized domains. Our method computes
regularized Wasserstein distances by constructing optimal transporta-
tion plans through iterative kernel convolutions—we thus name the
results convolutional Wasserstein distances. In what follows, we use
⊘ and ⊗ to indicate elementwise division and multiplication.

Requirements for computing convolutional distances are minimal:

• The domain M , discretized into n elements, with functions
and densities represented as vectors f ∈ R

n.

• A vector a ∈ R
n
+ of “area weights,” with a

⊤
1 = 1, defined

so that
∫

M

f(x) dx ≈ a
⊤
f .

• A symmetric matrix Ht discretizing the kernelHt such that

∫

M

f(y)Ht(·, y)dy ≈ Ht(a⊗ f).

It is sufficient to know how to apply Ht to vectors, rather than
storing it explicitly as a matrix in R

n×n
+,∗ .



For images, the natural discretization is an n1×n2 grid of pixels

(so n = n1n2). In this case, a
def.
= 1/n1n2 and Ht is the operator

convolving images with a Gaussian of standard deviation σ2 = γ.
Notice that Varadhan’s theorem is not needed in this domain, since
the heat kernel of the plane is exactly a Gaussian in distance.

For triangle meshes, we take n to be the number of vertices and the
area vector a as lumped areas proportional to the sum of triangle
areas adjacent to a given vertex. Given the cotangent Laplacian
L ∈ R

n×n [MacNeal 1949] and a diagonal area matrix Da (Dv

denotes the diagonal matrix with elements in vector v), we discretize
the heat kernel by solving the diffusion equation via an implicit Euler
integration [Desbrun et al. 1999] with time step t = γ/2, i.e.,

w = Ht(a⊗ v) ⇐⇒ (Da + γ/2L)w = a⊗ v.

Da + γ/2L can be pre-factored before distance computation, ren-
dering heat kernel convolution equivalent to a near-linear time back-
substitution. This feature is particularly valuable since we apply the
heat kernel repeatedly. Our implementation uses a sparse Cholesky
factorization [Davis 2006] with γ proportional to the maximum edge
length [Crane et al. 2013]; higher accuracy can be obtained via sub-
steps. Our discretization generalizes to geometric domains like point
clouds, tetrahedral meshes, graphs, and polygonal surfaces with
well-established discrete Laplacians (and therefore heat kernels).

We encode a distribution µ ∈ Prob(M) as a vector µ ∈ R
n
+ with

a
⊤
µ = 1 and a distribution π ∈ Prob(M ×M) as π ∈ R

n×n
+

with a
⊤
πa = 1. The discrete KL divergence between a discrete

distribution π and an arbitrary H ∈ R
n×n
+,∗ is then defined as

KL(π|H)
def.
=

∑

ij

πijaiaj

[

ln
πij

Hij
− 1

]

. (9)

Given discrete distributions µ0 and µ1, we model plans π ∈
Π(µ0,µ1) as matrices π ∈ R

n×n
+ with πa = µ0 and π

⊤
a = µ1.

Finally, the convolutional Wasserstein distance is computed via

W2
2,Ht

(µ0,µ1)
def.
= γ

[

1 + min
π∈Π

KL(π|Ht)

]

. (10)

Similarly to the continuous case, the minimization in (10) is convex
with linear constraints on π. Its complexity is tied to the variable
π, which scales quadratically in n. As shown in the supplemental
document, we overcome this issue using the following result:

Proposition 1. The transportation plan π ∈ Π(µ0,µ1) mini-
mizing (10) is of the form π = DvHtDw, with unique vectors
v,w∈Rn satisfying

{

DvHtDwa = µ0,

DwHtDva = µ1.
(11)

Therefore, rather than computing a matrix π, we can instead com-
pute a pair of vectors (v,w), reducing the number of unknowns to
2n. This proposition generalizes a result in [Cuturi 2013] with the
introduction of area weights a. We can find (v,w) by alternating
projections onto the linear marginal constraints via an area-weighted
version of Sinkhorn’s algorithm [1964], detailed in Algorithm 1.

As in [Solomon et al. 2014a],W2
2,Ht

between distributions centered
at individual vertices can be used as point-to-point distances. Fig. 3
shows one example computed using our algorithm. The resulting
pointwise distance squared is exactly the logarithm of Ht. Since
Crane et al. [2013] previously proposed a specialized algorithm

function CONVOLUTIONAL-WASSERSTEIN(µ0,µ1;Ht,a)

// Sinkhorn iterations
v,w← 1

for i = 1, 2, 3, . . .
v← µ0 ⊘Ht(a⊗w)
w← µ1 ⊘Ht(a⊗ v)

// KL divergence
return γ a

⊤ [(µ0 ⊗ lnv) + (µ1 ⊗ lnw)]

Algorithm 1: Sinkhorn iteration for convolutional Wasserstein dis-
tances. ⊗,⊘ denote elementwise multiplication and division, resp.

(a) (b)

Figure 3: W2
2,Ht

between δ distributions (a) as a vertex-to-vertex

distance (b; computed with γ = 10−5 — slight smoothing).

using the heat kernel for pointwise distances via this approximation,
we instead will focus on more general problems involving optimal
transportation not considered in their work.

Timing & numerics. To evaluate efficiency, we compare three
approaches to approximatingW2: a linear program discretizing (1),
regularized distances with a full distance-based kernel [Cuturi 2013],
and convolutional Wasserstein distances W2

2,Ht
. The linear pro-

gram is solved using state-of-the-art parallel optimization [MOSEK
ApS 2014], with all-pairs distances along mesh edges from an
O(n2 log n) algorithm [Johnson 1977]. [Cuturi 2013] and our con-
volutional distances are implemented in Matlab, the former using
the all-pairs distance matrix converted to a kernel and the latter us-
ing pre-factored Cholesky decomposition. All tests were run with
tolerance 10−5 on a 2.40GHz Intel Xeon processor with 23.5GB
RAM; for this test, γ is chosen as 1% of the median transport cost.

Table 1 shows results of this experiment on meshes of the same
shape with varying density. Both regularized approximations ofW2

outperform the linear program by a significant margin that grows
with the size of the problem. Our method also outperforms [Cuturi
2013] with a dense kernel matrix, both by avoiding explicit pairwise
distance computation and via the pre-factored diffusion operator;
the difference is particularly notable on large meshes for which the
kernel takes a large amount of memory. The one exception is the
smallest mesh, for which our method took longer to converge due to
numerical issues from the discretized heat equation.

The Sinkhorn algorithm is known to converge at a linear
rate [Franklin and Lorenz 1989; Knight 2008], and similar guar-
antees exist for alternating projection methods [Escalante and Ray-
dan 2011]. These bounds give a rough indicator of the number of
iterations needed to compute convolutional distances and derived
quantities used in §6. In practice, the convergence rate depends on
the sharpness of the kernel and of the distributions µ0 and µ1. The
experiments reported in Table 1 show that the time to convergence
is reasonable for challenging cases; most distance computations
converge within 10-20 iterations when γ was chosen on the order of
the average edge length, with faster convergence as γ is increased.
Finally, we point out that numerical issues may appear when γ is
smaller than the resolution of the domain, since the kernel operator
may become ill-conditioned.



|V | |T | PD LP [Cuturi 2013] PF W
2

2,Ht

693 1382 0.10 9.703 0.625 0.00 1.564

1150 2296 0.28 36.524 1.284 0.00 0.571

1911 3818 0.79 * 2.725 0.02 1.010

3176 6348 2.15 * 5.435 0.03 1.553

5278 10552 6.47 * 10.490 0.06 2.477

8774 17544 18.55 * 23.326 0.10 4.516

14584 29164 53.41 * * 0.17 8.152

Table 1: Timing (in sec.) for approximatingW2 between random
distributions on triangle meshes, averaged over 10 trials. An asterisk
* denotes time-out after one minute. Pairwise distance (PD) com-
putation is needed for the linear program (LP) and [Cuturi 2013];
timing for this step is written separately. Cholesky pre-factorization
(PF) is needed for convolutional distance and is similarly separated.

6 Optimization Over Distances

An advantage of convolutional Wasserstein distances is the variety
of optimizations into which they can be incorporated. Then, the goal
is not to evaluate Wasserstein distances but rather to optimize for
distributions minimizing an objective constructed out of them.

6.1 Wasserstein Barycenters

The Wasserstein barycenter problem attempts to summarize a col-
lection (µi)

k
i=1 of probability distributions by taking their weighted

average with respect to the Wasserstein distance. Following [Agueh
and Carlier 2011], given a set of weights α = (αi)

k
i=1 ∈ R

k
+, it is

defined as the following convex problem over the space of measures

minµ

∑k
i=1 αiW

2
2 (µ, µi). (12)

After discretization, we can pose the barycenter problem as

minµ

∑k
i=1 αiW

2
2,Ht

(µ,µi). (13)

Substituting transportation plans yields an equivalent problem:

min{πi}

∑k
i=1 αiKL(πi|Ht)

s.t. π
⊤
i a = µi ∀i ∈ {1, . . . , k}

πia = π1a ∀i ∈ {1, . . . , k}

The first constraint enforces that πi marginalizes to µi in one direc-
tion, and the second constraint enforces that all the πi’s marginalize
to the same µ in the opposite direction.

As suggested by Benamou et al. [2015], the expanded problem can
be viewed as a projection with respect to KL divergence from Ht

(repeated k times) onto the constraint set C1 ∩ C2, where

C1
def.
= {(πi)

k
i=1 : π⊤

i a = µi ∀i ∈ {1, . . . , k}}

C2
def.
= {(πi)

k
i=1 : πia = πja ∀i, j ∈ {1, . . . , k}}.

Problems of this form can be minimized using iterated Bregman pro-
jection [Bregman 1967], which initializes all the πi’s to Ht and then
cyclically projects the current iterate onto one Ci at a time. Unlike
the full optimization, projections onto C1 and C2 individually can be
written in closed form, as explained in the following propositions:

Proposition 2. The KL projection of (πi)
k
i=1 onto C1 satisfies

projC1
πi = πiDµi⊘π

⊤

i a
for each i ∈ {1, . . . k}.

Proposition 3. The KL projection of (πi)
k
i=1 onto C2 satisfies

projC2
πi = Dµ⊘diπi for each i ∈ {1, . . . k}, where di = πia

and µ =
∏

i d
αi/

∑
ℓ αℓ

i .

The propositions, originally presented without area weights in [Be-
namou et al. 2015] and proved similarly in our supplemental

function WASSERSTEIN-BARYCENTER({µi}, {αi};Ht,a)
// Initialization
v1, . . . ,vk ← 1

w1, . . . ,wk ← 1

// Iterate over Ci’s
for j = 1, 2, 3, . . .

µ← 1

for i = 1, . . . , k
// Project onto C1
wi← µi ⊘Ht(a⊗ vi)
di← vi ⊗Ht(a⊗wi)
µ← µ⊗ d

αi
i

// Optional
µ← ENTROPIC-SHARPENING(µ, H0;a)

// Project onto C2
for i = 1, . . . , k

vi← vi ⊗ µ⊘ di

return µ

Algorithm 2: Wasserstein barycenter using iterated Bregman pro-
jection. Both of the inner for loops can be parallelized over i.

document, show that the necessary Bregman projections can be
carried out via pre- or post-multiplication by diagonal matrices.
Hence, we can store and update vectors vi,wi ∈ R

n so that
πi = DviHtDwi . If M is represented using n samples, this re-
duces storage and algorithmic runtime by a factor of n.

Algorithm 2 documents the barycenter method. It initializes all the
πi’s to Ht by taking vi = wi = 1 for all i and then alternatingly
projects using the formulas above. The only operations needed are
applications of Ht and elementwise arithmetic. We never need to
store the matrix of Ht explicitly and instead apply it iteratively;
this structure is key when Ht represents a heat kernel obtained by
solving a linear system or convolution over an image.

Entropic Sharpening. Barycenters computed using Algorithm 2
have similar qualitative structure to barycenters with respect to the
true Wasserstein distanceW2 but may be smoothed thanks to en-
tropic regularization. This can create approximations of the barycen-
ter that qualitatively appear too diffuse.

We introduce a simple modification of the projection method coun-
teracting this phenomenon. Define the entropy of µ to be

H(µ)
def.
= −

∑

i

aiµi lnµi.

We expect the non-regularized Wasserstein barycenter of a set of
distributions to have entropy bounded by that of the input distribu-

tions (µi)
k
i=1. Hence, take H0

def.
= maxi H(µi) (or a user-specified

bound). Then, we can modify the barycenter problem slightly:

minµ

∑k
i=1 αiW

2
2,Ht

(µ,µi)
s.t. H(µ) ≤ H0.

(14)

That is, we wish to find a distribution with bounded entropy that
minimizes the sum of transportation distances.

The problem in (14) is not convex, but we apply Bregman projections
nonetheless. We augment C2 with an entropy constraint:

C2
def.
= C2∩{(πi)

k
i=1 : H(πia)+a

⊤
πia ≤ H0+1 ∀i ∈ {1, . . . , k}}



function ENTROPIC-SHARPENING(µ, H0;a)
if H(µ) + a

⊤
µ > H0 + 1 then

β← FIND-ROOT(a⊤
µ

β +H(µβ)− (1 +H0); β ≥ 0)
else β ← 1
return µ

β

Algorithm 3: Entropic sharpening method; we default to β = 1
when no root exists but rarely encounter this problem in practice.

p0 p1 ∞ H + 2 H + 1 H

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H0

Figure 4: Barycenters with different levels of entropic sharpening,

controlled by H0. Here, H
def.
= max{H(µ1), H(µ2)} ≈ −2.569.

The a
⊤
πia term is for algebraic convenience in proving the propo-

sition below; at convergence, a⊤
πia = 1 and this term cancels

with the 1 on the right-hand side of the inequality. Remarkably,
despite the nonconvexity, KL projection onto C2 can be carried out
efficiently, as proved in the supplemental document:

Proposition 4. There exists β ∈ R such that the KL projection
of (πi)

k
i=1 onto C2 satisfies projC2

πi = Dµ⊘diπi for all i ∈

{1, . . . , k}, where di = πia and µ =
(
∏

i d
αi
i

)β
.

That is, the entropy-constrained projection step takes the result of
the unconstrained projection to the β power to achieve the entropy
bound. The exponent β can be computed using single-variable
root-finding (e.g. bisection or Newton’s method), as shown in Al-
gorithm 3. Empirically, the Bregman algorithm converges to a
near-barycenter with limited entropy when using this new projection
step as long as H0 is on the order of the entropy of the µi’s. For
difficult test cases, higher-quality barycenters can be recovered by
first solving the problem without an entropy constraint and then
iteratively introducing entropic sharpening with tightening bounds.

Fig. 4 illustrates the effect of the bound H0 on the barycenter of
two distributions. As H0 decreases, the barycenter becomes sharply
peaked about its modes, counteracting the aggressive regularization.

6.2 Displacement Interpolation

The 2-Wasserstein distanceW2 has a distinguishing displacement
interpolation property [McCann 1997]. W2(µ0, µ1) is the length
of a geodesic µt : [0, 1] → Prob(M) in Prob(M) with respect
to a metric induced by squared geodesic distances on M . The
time-varying sequence of distributions µt transitions from µ0 to
µ1, moving mass continuously along geodesic paths on M . As a
point of comparison, Solomon et al. [2014a] use flows along M to
evaluate the 1-Wasserstein distanceW1; the resulting interpolation,
however, is given by the trivial formula µt = (1− t)µ0 + tµ1.

Agueh and Carlier [2011] prove under suitable regularity that the
interpolating path µt from µ0 to µ1 satisfies

µt = inf
µ∈Prob(M)

[

(1− t)W2
2 (µ0, µ) + tW2

2 (µ, µ1)
]

, (15)

for all t ∈ [0, 1]. This formula provides a means to compute µt

directly rather than optimizing an entire path in probability space.

In the discrete case, given µ0,µ1 ∈ Prob(M) we wish to find a

v 6∈ V0

w ∈ V0 v 6∈ V0

w ∈ V0

Barycenter Displacement interpolation

Figure 5: Wasserstein propagation can be used to model barycenter
problems and displacement interpolation. Here, we show the corre-
sponding graph G = (V,E); vertices in V0 have solid shading.

time-varying µt interpolating between the two. To do so, we define

µt
def.
= min

µ∈Prob(M)

[

(1− t)W2
2,Ht

(µ0,µ) + tW2
2,Ht

(µ,µ1)
]

.

(16)
This can be minimized using Algorithm 2 with α = (1− t, t).

Fig. 6 shows displacement interpolation between two multi-peaked
distributions on a triangle mesh, with and without entropic sharpen-
ing. Again, sharpening avoids entropy introduced by the regularizer.

6.3 Wasserstein Propagation

Generalizing the barycenter problem, we consider the “Wasserstein
propagation” problem posed by Solomon et al. [2014b]. Suppose
G = (V,E) is a graph with edge weights α : E → R+; take |V | =
m. With each vertex v ∈ V , we associate a label µv ∈ Prob(M),
whose value is a distribution over another domain M . Given fixed
labels µv on a subset of vertices V0 ⊆ V , we interpolate to the
remaining vertices in V \V0 by solving

min
(µi)

m
i=1

∑

(v,w)∈E

α(v,w)W
2
2 (µv, µw),

subject to the constraint that µv is fixed for all v ∈ V0.

function WASSERSTEIN-PROPAGATION(V,E, V0,µ(V0);Ht,a)
// Initialization
v1, . . . ,v|E|← 1

w1, . . . ,w|E|← 1

// Iterate over Ci’s
for j = 1, 2, 3, . . .

for v ∈ V
if v ∈ V0 then

µ← µ0(v)
// Project adjacent πe’s
for e ∈ N(v)

if e = (w, v) then we ← µ⊘Ht(a⊗ ve)
if e = (v, w) then ve ← µ⊘Ht(a⊗we)

else if v 6∈ V0 then
// Estimate distribution
ω←

∑

v∈e αe

µv ← 1

for e ∈ N(v)
if e = (w, v) then de ← we ⊗Ht(a⊗ ve)
if e = (v, w) then de ← ve ⊗Ht(a⊗we)

µv ← µv ⊗ d
αe/ω
e

for e ∈ N(v)
if e = (w, v) then we ← we ⊗ µv ⊘ de

if e = (v, w) then ve ← ve ⊗ µv ⊘ de

return µ1, . . . ,µ|V |

Algorithm 4: Wasserstein propagation via Bregman projection.



As an example, as proposed in [Solomon et al. 2012], suppose
we are given two meshes and wish to find a map from vertices of
one to vertices of the other. We can relax this problem by instead
constructing maps to probability distributions over vertices of the
second mesh. Given ground-truth correspondences for a few vertices,
the optimization above fills in missing data.

Propagation can be modeled using convolutional distances as

minµv

∑

(v,w)∈E α(v,w)W
2
2,Ht

(µv,µw)

s.t. µv fixed ∀v ∈ V0.
(17)

Following the optimizations in previous sections, we instead opti-
mize over transportation matrices πe for each e ∈ E:

minπe

∑

e∈E α(v,w)KL(πe|Ht)
s.t. πea = µv ∀e = (v, w)

π
⊤
e a = µw ∀e = (v, w)

µv fixed ∀v ∈ V0.

The interpolated µ’s will be distributions because they must have the
same integrals as the µ’s in V0. Algorithm 4 uses iterated Bregman
projection to solve this problem by iterating over one vertex in V at
a time, projecting onto constraints fixing all marginals for that vertex.
Applying Propositions 2 and 3, we can write πe = DveHtDwe

and update the ve’s and we’s using simple rules.

Propagation encapsulates many other optimizations in Wasserstein
space. Fig. 5 illustrates two examples. The convolutional barycen-
ter problem (§6.1) is exactly propagation where G is a star graph,
with vertices in V0 on the spokes and the unknown distribution µ

associated with the center. An alternative model for displacement
interpolation (§6.2) discretizes t ∈ [0, 1] as a line graph, with two
vertices in V0 at the ends of the interval. This model is different
from (15), which directly predicts the interpolation result at time t
rather than computing the entire interpolation simultaneously.

7 Applications

Equipped with the machinery of convolutional transportation, we
now describe several graphics applications directly benefiting from
these distances and related optimization problems.

Shape interpolation. A straightforward application of Wasser-
stein barycenters is shape interpolation. We represent k
shapes (Si)

k
i=1 ⊂ [−1, 1]2 using normalized indicator functions

(χ(Si)/vol(Si))
k
i=1 ∈ Prob([−1, 1]2). Given weights (αi)

k
i=1, we

compute the (near-)indicator function of an averaged shape as the
minimizer µ ∈ Prob([−1, 1]2) of

∑

i αiW
2
2,Ht

(µ, χi); this indica-
tor easily can be sharpened if a true binary function is desired.

Fig. 12 shows barycenters between four shapes with bilinear weights.
Unlike the mean

∑

i αiχi(Si)/vol(Si), shapes obtained using
Wasserstein machinery smoothly transition between the inputs, cre-
ating plausible intermediate shapes. Fig. 13 provides a 1D inter-
polation example, with simple post-processing (thresholding and
coloring) to recover boundaries. Figs. 1, 7, and 14 show analogous
examples in three dimensions. We represent a surface volumetrically
using the normalized indicator function of its interior. We interpolate
the resulting distributions using convolutional barycenters and ex-
tract the level set corresponding to the half the maximum probability
value. This volumetric approach can handle topological changes,
e.g. interpolating between a shape with two components (lower left)
and three singly-connected shapes (remainder).

Figure 7: Shape interpolation in 3D, expanded from Fig. 1.

BRDF design. The BRDF f(ωi, ωo) of a material defines how
much light it reflects from each incoming direction ωi to each outgo-
ing direction ωo. If ωi is fixed, all the outgoing directions fall on a
hemisphere defined by the surface normal. After scaling, the BRDF
values for ωo form a probability distribution over the hemisphere.
Hence, displacement interpolation can be applied to interpolate be-
tween materials, as in [Bonneel et al. 2011].

We use convolutional barycenters to combine more than two distri-
butions at a time. For each incoming direction in the sampled BRDF,
the values associated to the outgoing directions are organized in a 2D
grid by spherical angle. We use weighted Wasserstein barycenters to
interpolate this data. The spherical heat kernel Ht is approximated
by the fast approximate Gaussian convolution from [Deriche 1993].
Spherical geometry is accounted for by modulating the width of this
separable filter. We render images using the interpolated BRDFs
using PBRT [Pharr and Humphreys 2010].

Fig. 8 shows interpolation between four BRDFs using our technique,
yielding continuously-moving highlights. The corner BRDFs are
sampled from closed-form materials [Blinn 1977; Ashikhmin and
Shirley 2000]; the remaining BRDFs are interpolated.

Color histogram manipulation. In image processing, optimal
transportation has proven useful for color palette manipulations like
contrast adjustment [Delon 2006] and color transfer [Pitié et al.
2007] via 1D transportation. Previous methods for this task avoid
carrying out multi-dimensional transport, e.g. using 1D sliced ap-
proximations or cumulative axis-aligned transport [Pitié et al. 2007;
Bonneel et al. 2014; Papadakis et al. 2011] or can support only
coarse histograms [Ferradans et al. 2014]. Convolutional transport,
however, handles large-scale 2D chrominance histograms directly.

We transfer color over the CIE-Lab domain by modifying the one-
dimensional L (luminance) and two-dimensional ab (chrominance)
channels independently, where luminance takes values in [1, 100]
and chrominance takes values in M = [−128, 128]2. Remapping L
requires 1D transport, which is computable in closed form [Villani
2003]; we describe the processing of the ab channel below.

Suppose we express the ab components of k images as a set of
functions (fi)

k
i=1, where fi : [0, 1]2 → M takes a point on the

image plane and returns an ab chrominance value. The chrominance
histogram µi associated to fi is the push-forward of the uniform
measure U on [0, 1]2 by the map fi, satisfying µi(A) = U(f−1

i (A))
for A ⊂M . It is approximated numerically by a discrete histogram
µi on an uniform rectangular grid over M .

For a given set of weights α ∈ R
k
+, we solve the barycenter prob-

lem (12) using Algorithm 2. This provides the weighted barycenter
µ ∈ Prob(M), discretized as a vector µ. The algorithm further-
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H0=max{H(µ0),H(µ1)}

Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) =
1

µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V 7→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v 6∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:





∑

(v,w)∈E

1

ℓ2(v,w)

W2
2,Ht

(µv,µw)



+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)



Source e−αc(x,y) Result
Result

(left/right flip)

Figure 10: Soft maps: Colored points on the source are mapped to
the colored distributions on the target, where black points are fixed
input correspondences. Our method is able to extract two maps from
the left-right symmetric descriptor c(x, y), depending on whether
the fixed correspondences preserve orientation or are flipped.

This objective favors distributions µv with low compatibility cost;
the weight ωv is the area weight of v ∈M0.

Take N(v) to be the valence of v ∈ V . In terms of transportation
plans, (18) equals

∑

(v,w)∈EW
2
2,Ht

(µv,µw)/ℓ
2
(v,w), where

Ht
def.
= diag

[

exp

(

−
ℓ2eτωvcv

γN(v)

)]

Htdiag

[

exp

(

−
ℓ2eτωwcw

γN(w)

)]

.

This matrix is a diagonal rescaling of Ht, so we can still efficiently
optimize (18) using Algorithm 4, slightly adjusted to use a different
kernel on each edge. Fig. 10 shows maps between a pair of surfaces
computed using this technique. Because the models are nearly iso-
metric, we use the wave kernel signature (WKS) [Aubry et al. 2011]
to determine the compatibility function c(x, y). This signature is un-
able to distinguish between the orientation-preserving and left/right
flipped maps between the two surfaces. Wasserstein propagation
guided by this choice of c(x, y) paired with a sparse set of fixed
correspondences breaking the symmetry is enough to recover both
maps. The resulting soft map matrices are of size 1024× 1024, an
order of magnitude larger than the maps generated in [Solomon et al.
2012], computed in less than a minute using similar hardware.

8 Discussion and Conclusion

Although optimal transportation has long been an attractive poten-
tial technique for graphics applications, optimization challenges
hampered efforts to include it as part of the standard toolbox. Convo-
lutional Wasserstein distances comprise a large step toward closing
the gap between theory and practice. They are easily computable via
the heat kernel—a well-studied and widely-implemented operator
in graphics—and through the iterated projection algorithm can be
incorporated into modeling problems with transportation terms.

We have demonstrated the breadth of applications enabled by this
framework, from rendering to image processing to geometry. Mod-
eling via probability distributions is natural for these and other
problems, and we foresee applications across several additional
disciplines. Having reduced the cost of experimenting with trans-
portation models, future studies now may incorporate transportation
into graphics applications including processing of volumetric data,
caustic design, dimensionality reduction, and simulation.

Several theoretical and numerical problems remain open. The regu-
larization in convolutional transport enables scalable computation
but introduces smoothing; imaging applications like those in [Zhu
et al. 2014] require sharp edges that can get lost. As it stands now,
while our technique outperforms existing methods for transportation
in graphics, numerics degrade if γ is too small, similar to the heat
kernel approximation in [Crane et al. 2013]; this is the primary draw-
back of our transport approximation. Modeling with “true” quadratic

Euclidean barycenter Wasserstein barycenter

Figure 12: Interpolating indicators using linear combinations (left)
is ineffective for shape interpolation, but convolutional Wasserstein
barycenters (right) move features by matching mass of the underly-
ing distributions.

Figure 13: “Generalized Mahjong:” Linear (top) and displacement
(middle) interpolation between two images; while it is less sharp,
the displacement interpolation result can be post-processed using
simple image filters to generate a nontrivial interpolation (bottom;
see e.g. the tip of the “9” character rotating outward).

Wasserstein distances remains a challenge on images and triangle
meshes, and large-scale discretizations of flow models proposed by
Benamou and Brenier [2000] remain to be formulated. Closer to
the current discussion, the algorithm for propagation in §6.3 might
benefit from preconditioners spreading information non-locally in
each iteration; this would alleviate the need to iterate |V | times to
guarantee “communication” between every pair of vertices.

Optimal transportation provides an intuitive, foundational approach
to geometric problems over many domains. Practical, easily-
implemented optimization tools like the ones introduced here will
enable its incorporation into graphics pipelines for countless tasks.
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Figure 11: Color transfer with 2D convolutional transportation over the chrominance space. Top row: evolution of the color-corrected image
fα
1 as a function of α = (1− t, t). Middle row: evolution of fα

2 . The red (resp. blue) framed image shows the input f1 (resp. f2) which is
obtained for t = 0 (resp. t = 1). Bottom row: barycenter histogram µ as a function of t; colors encode the corresponding position x over the
(a, b) domain while luminance corresponds to the amplitude of µ(x) (zero being white).
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